
Bitcoin
To fork or not to fork: the blockchain’s propensity

to converge

Bassam El Khoury Seguias

August 28, 2018

1 Introduction

The revolution that has been brought about by Bitcoin’s blockchain is a direct
result of its open nature. Indeed, anyone can be part of it, suggest changes to it, mine
new blocks in it, or simply conduct routine validations on it. It is in many respects,
the epitome of decentralization and censorship-resistance. Its appealing nature is
in large part rooted in its rich interdisciplinary foundation that spans across philosophy,
mathematics and economics.

But beyond the elegance of its theoretical underpinning, the blockchain’s seamless im-
plementation rests on an inherent agreement between its different participants. Without
agreement, this harmonious apparatus would likely decay into chaos. The rather flawless
operation of the system is the result of a particular consensus protocol known as Proof
of Work (or PoW for short).

The consensus is meant to be amongst all of the miners on the network. It stipulates
that any miner always extend the chain of blocks with the highest amount of cumu-
lative work. In this context, work is a measure of the expected computational effort
that a miner exerts in order to solve a given cryptographic challenge. In essence, the
challenge consists in finding a value that makes the computation emit an output with a
mandatory minimum number l of leading 0’s. The work associated with mining a given
block corresponds to the value 2l, where l is dynamically adjusted to ensure that the
network’s average block rate remains constant at ∼ 0.00167 blocks / second (i.e., 1 block
per 10 minutes). We discuss PoW in more detail in another post.

In an ideal setting where all miners are honest (i.e., abide by the PoW consensus
protocol) and where blocks are propagated instantaneously on the network, all the nodes
will always have a unified view of the blockchain – barring the extremely unlikely scenario
of two distinct miners generating two valid blocks at the exact same time. However,
imperfections do exist:

1

2018 Bassam El Khoury Seguias ©

• Imperfection #1: The network incurs an information propagation delay. As a
result, every new block takes a positive amount of time to reach all the other nodes
on the network.

• Imperfection #2: There exists a subset of dishonest miners that decide to disre-
gard the PoW consensus protocol. Such miners could fork the blockchain and start
mining on top of a parallel chain different from the one with the highest amount of
cumulative work.

In the first case, miners are bound to momentarily experience diverging views of the
blockchain. Even if all miners were honest, a network propagation delay would still
cause natural forks to form on the blockchain. This is not desirable because one of
the most important tenets of a well-functioning ledger consists in ensuring a unified view
of the state of the system at any point in time. We will show in section 2 that the
probability of a natural fork occurring at some point in time on a system incurring an
information propagation delay is equal to 1. However, we prove that the probability of
sustaining a natural fork over a certain time interval is upper-bounded by a quantity
that decays exponentially with the length of the interval. Consequently, any natural fork
will collapse within finite time with high likelihood. A blockchain subject to the PoW
consensus protocol is hence inclined to rapidly settle any natural fork that emerges.

In the second case, dishonest miners could stage an attack and maliciously attempt to
redirect the blockchain to another chain of their liking. The likelihood of success of such
an attack (also known as a 51% attack) depends on the hashing power of the dishonest
miner or pool of miners. We will discuss this case in section 3.

2 Probability of sustaining a natural fork when all

miners are honest

We start by defining the following network parameters:

2

2018 Bassam El Khoury Seguias ©

• Let q ≥ 2 denote the total number of miners on the network. We let mi denote the
ith miner, i ∈ {1, ..., q}.

• Let hi denote mi’s hashing power, i ∈ {1, ..., q}. And let H ≡ Σq
i=1hi denote the

network’s total hashing power.

• Let λ denote the network’s block rate in units of blocks per second. Moreover, let
λi ≡ (hi

H
)λ denote mi’s specific block rate, i ∈ {1, ..., q}. Hence λ =

∑q
i=1 λi.

• Let tij denote the average time in seconds it takes to propagate a block from mi

to mj and vice versa (assuming symmetry). We define the network’s propagation
delay to be tp ≡ maxi,j∈{1,...,q}tij. We also define the network’s propagation unit to
be tu ≡ mini,j∈{1,...,q}tij.

• The probability that mi generates k blocks (k ∈ N+) within an interval of t > 0
seconds follows a Poisson distribution with mean equal to λit blocks. As a result,
∀i ∈ {1, ..., q} we have:

P [mi generates k blocks within t seconds] = (λit)
k

k!
e−λit

We also define the following four events:

• FT ≡ ”At least one fork of the blockchain is formed at some point in time
tf ∈ (0, T]”. The time origin t = 0 can be chosen arbitrarily.

• DB ≡ ”A fork is formed at block #B of the blockchain. All miners shared a
unified view of the blockchain right before #B’s addition by a given miner.”

• ST ≡ ”A fork that was created at time tf > 0 is sustained (i.e., does not collapse)
for a minimum duration of T seconds right after its formation.”

• DST ≡ ”A double-spend transaction coexists with the legitimate transaction, T
seconds after the latter got added to a certain block”.

Note that in what follows, we make the following two assumptions:

1. The PoW consensus protocol consists in extending the chain of blocks that has
the highest amount of accumulated work. Theoretically, this is not equivalent to
the longest chain (i.e., the chain with the highest number of blocks). However, for
all practical matters, we assume that they are equivalent going forward.

2. The block propagation delay tp as defined earlier could be a large number since
there might be nodes on the network that take a large amount of time on average
to receive a given block. In general, block propagation statistics are described in
terms of percentiles tracking how long it takes to propagate a block to a certain
fraction of the network [2]. For all practical matters, we assume that tp
corresponds to the average time taken to propagate a block to 99% of the network.

3

2018 Bassam El Khoury Seguias ©

Our objective is four-fold:

1. We first calculate the probability P [F∞] of a natural fork occurring at some point
in time (assuming all miners are honest) and show that it is equal to 1.

2. Second, we derive a non-trivial upper bound on P [DB], for any given block #B.

3. Third, we derive a non-trivial upper bound on P [ST], decaying exponentially in T.

4. Finally, we derive a non-trivial upper bound on P [DST].

Objective #1: Natural forks on the blockchain happen with probability 1:

• Choose tm such that 0 < tm < tu. We can write:

P [F∞] = limn→∞P [Fntm] = 1− limn→∞P [Fntm]

where Fntm ≡ ”No fork is formed on the blockchain at any time in the interval
(0, ntm]”

• ∀k ∈ {1, ..., n}, let E(k,tm) ≡ ”No fork is formed on the blockchain at any time in
the interval ((k − 1)tm, ktm]”. We can then write:

Fntm = ∩nk=1E(k,tm).

• Let (E0)(k,tm) ≡ ”None of the q miners generate any block in the interval
((k − 1)tm, ktm]”, and let (E1)(k,tm) ≡ ”One and only one miner out of q
generates at least 1 block in the interval ((k − 1)tm, ktm]”. We claim that:

E(k,tm) | F(k−1)tm ⇒ (E0)(k,tm) ∪ (E1)(k,tm), for all 2 ≤ k ≤ n

To see why, note that if (E0)(k,tm) and (E1)(k,tm) were not true, there would exist
at least two miners that generate at least 1 block each in interval ((k− 1)tm, ktm].
Since tm < tu, it must be that at least two parallel blocks (one from each miner)
coexist, hence forming a fork. Indeed, the choice of tm guarantees that none of the
two blocks will have sufficient time to propagate to the other node. We conclude
that (E0)(k,tm) ∪ (E1)(k,tm) is a necessary condition for E(k,tm) | F(k−1)tm to hold.
Observing that (E0)(k,tm) and (E1)(k,tm) are disjoint, we get:

P [E(k,tm) | F(k−1)tm] ≤ P [(E0)(k,tm) ∪ (E1)(k,tm)] = P [(E0)(k,tm)] + [(E1)(k,tm)].

• We can calculate P [(E0)(k,tm)] = Πq
i=1e

−λitm = e−λtm . This quantity is independent
of k and so P [(E0)(k,tm)] ≡ P [(E0)tm]

• Similarly, P [(E1)(k,tm)] = Σq
i=1[(1− e−λitm)Πq

j=1,j 6=ie
−λjtm] = e−λtm(Σq

i=1e
λitm − q).

This quantity is also independent of k and so P [(E1)(k,tm)] ≡ P [(E1)tm]

• Putting it altogether, we get:

P [Fntm] = P [∩nk=1E(k,tm)] = Πn
k=2 (P [E(k,tm) | F(k−1)tm])× P [E(1,tm)]

4

2018 Bassam El Khoury Seguias ©

≤ Πn
k=2 (P [E(k,tm) | F(k−1)tm]) ≤ Πn

k=2 (P [(E0)tm] + P [(E1)tm])

= (P [(E0)tm] + P [(E1)tm])n−1

• ∀j ∈ {0, ..., q}, let (Ej)tm denote the event ”j and only j miners out of q generate
at least 1 block each in an interval of tm seconds”. One can easily see that for a
finite value of tm, (Ej)tm > 0, ∀j ∈ {0, ..., q}. As a result, we have:

P [(E0)tm] + P [(E1)tm] < Σq
j=0P [(Ej)tm] = 1

• Consequently, we get:

0 ≤ P [F∞] = limn→∞P [Fntm] ≤ limn→∞(P [(E0)tm] + P [(E1)tm])n−1 = 0

And since P [F∞] = 0, we conclude that P [F∞] = 1

Objective #2: A non-trivial upper bound on the probability of a natural
fork occurring at an arbitrary block:

Suppose that all miners share a unified view of the blockchain. At time tB, one of the
miners adds block #B to the blockchain. Miners that still haven’t received block #B,
(which for all practical matters could take up to tB + tp) could generate their own block
and start a fork at #B. We are interested in computing the probability that such an
event occurs, i.e. P [DB]. We define the following:

• UB ≡ ”No fork gets formed at block #B, knowing that all miners shared a unified
view of the blockchain right before #B’s addition by some miner.”

• UBk,∆t ≡ ”None of the miners that still haven’t received block #B by time
tB + (k + 1)∆t, generate any block in time interval (tB + k∆t, tB + (k + 1)∆t].”

• Let qk,∆t be the total number of miners out of a total of q miners, that still
haven’t seen block #B by time tB + (k + 1)∆t. Let these miners be indexed as
{mk1 , ...,mkqk,∆t

}, and let λkj denote the block rate of miner mkj , j ∈ {1, ..., qk,∆t}.

By letting ∆t→ 0, we can write:

UB = lim∆t→0{∩∞k=0 UBk,∆t}

And so letting λmax = maxqi=1λi, we can write:

P [UB] = lim∆t→0{Π∞k=0 e
−Σ

qk,∆t
j=1 (λkj∆t)} ≥ lim∆t→0{Π∞k=0 e

−qk,∆t(λmax∆t)}

= lim∆t→0{e−Σ∞k=0[qk,∆t(λmax∆t)]} = lim∆t→0{e−Σ∞k=0[(
qk,∆t
q

)(qλmax∆t)]}

Letting g(t) be the ratio of miners that still haven’t received block #B by time t, we get:

P [UB] ≥ e−qλmax(
∫∞
0 g(t)dt)

5

2018 Bassam El Khoury Seguias ©

P [DB] = 1− P [UB] ≤ 1− e−qλmax(
∫∞
0 g(t)dt)

Note that if all miners share the same block rate λ
q
, then qλmax = λ. As a result, we

would get P [DB] = 1− e−λ(
∫∞
0 g(t)dt) (note the equality in this case). For small λ, the

upper bound can be approximated by 1− (1− λ)
∫∞
0 g(t)dt, as found in [1]. Below is a

representation of a block propagation delay as observed on the 6th of August 2018 [2].
In order to compute g(t), we make the assumption that the share of miners that still
haven’t received the block by a certain time is the same as the corresponding share of
generic nodes.

We find that
∫∞

0
g(t)dt = 1.25. Using λ = 1

600
blocks/sec, we get P [DB] ≤ 0.208%.

Objective #3: Natural forks collapse with high likelihood in a finite amount
of time:

In what follows, we derive a non-trivial upper bound on P [ST]. To do so, we will first
find a lower bound on the probability of occurrence of its complement ST ≡ ”A fork
that was created at time tf > 0, collapses at some point in time in the interval
(tf , tf+T]”. A lower bound on P [ST] would be given by P [E], where E is an event
whose occurrence is a sufficient condition for ST to hold true. Our objective becomes
one of finding an appropriate E and calculating a lower bound on P [E].

In the tree below, we depict the different scenarios that lead to a natural fork
formation, starting with a shared view of the blockchain. ti, t

′
i, t
′′
i and tf are time

instances corresponding to block formations by miners mi and mf respectively. Recall
that tif denotes the average block propagation time between mi and mj. Scenarios that
lead to a fork formation are one of two types: those that lead to parallel chains of equal

6

2018 Bassam El Khoury Seguias ©

length (i.e., Type 1) and those that lead to chains of different lengths (i.e., Type 2):

Forks of type 1: Before time ti, all miners share the same view of the blockchain. At
ti, mi (for some i ∈ {1, .., q}) generates block #ni. At tf , mf (for some
f ∈ {1, .., q}, f 6= i) generates the following block #nf such that tf − ti < tif . If we wait
for tp seconds and no miner generates any block in interval (tf , tf + tp], then at time
(tf + tp) there will be more than one view of the blockchain, all of which have the same
length. If for the following x seconds (x > 0), one and only one mk, k ∈ {1, ..., q}
generates at least one block #(n+ 1)k, and then for the following tp seconds no miner
generates any block, then by time tf + x+ 2tp all forks would collapse. This is depicted
in the figure below:

7

2018 Bassam El Khoury Seguias ©

Forks of type 2: Before time ti all miners share the same view of the blockchain. At
ti, mi (for some i ∈ {1, .., q}) generates block #ni. At t′i, mi mines the next block
#(ni + 1). At tf , mj (for some j ∈ {1, .., q}, j 6= i) generates the following block
#nj (0 < tf − ti < tif) Two views of the blockchain will coexist at tf , with one being a
longer chain than the other. If we wait for tp seconds, and no miner generates any block
in interval (tf , tf + tp], then by (tf + tp) all forks would collapse. This is depicted in the
figure below:

One consequence is that given a fork that was formed at time tf , if we ensure that for
the next tp seconds no miner generates any blocks, and that for the subsequent x

8

2018 Bassam El Khoury Seguias ©

seconds one and only one miner generates at least 1 block, and finally for the
subsequent tp seconds no miner generates any block, then the fork would collapse in the
interval (tf , tf + x+ 2tp]. This construction ensures a sufficient condition for a fork to
collapse within a specific time interval. In what follows, we formalize our approach:

• Let k ∈ N+ and let x ∈ R∗+. We refer to x as the interval design parameter
expressed in units of seconds. We define the following events:

1. (E0)(k,x) ≡ ”No miner out of q generates any block in time interval
(tf + k(x+ 2tp), tf + kx+ (2k + 1)tp]”

2. (E1)(k,x) ≡ ”One and only one miner out of q generates at least 1 block in
time interval (tf + kx+ (2k + 1)tp, tf + (k + 1)x+ (2k + 1)tp]”

3. (E2)(k,x) ≡ ”No miner out of q generates any block in time interval
(tf + (k + 1)x+ (2k + 1)tp, tf + (k + 1)(x+ 2tp)]”

4. E(k,x) ≡ ”Any fork that could have existed at time tf + k(x+ 2tp) collapses at
some time in the interval (tf + k(x+ 2tp), tf + (k + 1)(x+ 2tp)].”

5. Ek,x ≡ ”At least one fork that existed at time tf + k(x+ 2tp) is sustained
throughout time interval (tf + k(x+ 2tp), tf + (k + 1)(x+ 2tp)].”

• The previous logic allows us to conclude that if (E0)(k,x), (E1)(k,x) and (E2)(k,x) are
all satisifed, then E(k,x) will hold true (k ≥ 0), and so will E(k,x) | E(k−1,x), ..., E(0,x)

(k ≥ 1). We conclude that the event (E0)(k,x) ∩ (E1)(k,x) ∩ (E2)(k,x) is sufficient for
the occurrence of E(k,x) (k ≥ 0) and E(k,x) | E(k−1,x), ..., E(0,x) (k ≥ 1). We get:

p[E(k,x)], p[E(k,x) | E(k−1,x), ..., E(0,x)] ≥ p[(E0)(k,x) ∩ (E1)(k,x) ∩ (E2)(k,x)] ≡

P [∩ql=1(ml does not create any block in time interval
(tf + k(x+ 2tp), tf + kx+ (2k + 1)tp]) ∩

∪qi=1 {mi creates at least one block in time interval
(tf + kx+ (2k + 1)tp, tf + (k + 1)x+ (2k + 1)tp] ∩qj=1,j 6=i (mj does not create any

block in time interval (tf + kx+ (2k + 1)tp, tf + (k + 1)x+ (2k + 1)tp])}

∩ql=1(ml does not create any block in
(tf + (k + 1)x+ (2k + 1)tp, tf + (k + 1)(x+ 2tp)])]

Recognizing that all the events appearing under the union symbol above are
disjoint, and that all the intersections are taken over independent events, we get:

p[E(k,x)], p[E(k,x) | E(k−1,x), ..., E(0,x)] ≥

[Σq
i=1(1− e−λix)e−(λ−λi)x]e−2λtp = e−λ(x+2tp)[Σq

i=1e
λix − q]

• Now note that Σq
i=1e

λix = q × Σq
i=1

1
q
eλix. And since the exponential function is

convex, we can invoke Jensen’s inequality to conclude that ∀x ∈ R∗+ we have:

Σq
i=1e

λix ≥ q × e(Σqi=1λix)/q = qe(λx)/q

9

2018 Bassam El Khoury Seguias ©

• As a result, ∀x ∈ R∗+,

P [(E)(k,x)], p[E(k,x) | E(k−1,x), ..., E(0,x)] ≥ qe−λ(x+2tp)[e(λx)/q − 1]

And so

P [E(k,x)] = 1− P [E(k,x)] ≤ 1− qe−λ(x+2tp)[e(λx)/q − 1], and

P [E(k,x) | E(k−1,x), .., E(0,x)] = 1− P [E(k,x) | E(k−1,x), .., E(0,x)] ≤

1− qe−λ(x+2tp)[e(λx)/q − 1]

• Let n ∈ N+. In order to sustain a fork over a minimum duration of n(x+ 2tp)
seconds after its formation at time tf , we must sustain it over each interval of time
of the form (tf + k(x+ 2tp), tf + (k + 1)(x+ 2tp)], ∀k ∈ {0, ..., n− 1}. This
implies that:

Sn(x+2tp) ⇒ ∩n−1
k=0E(k,x)

As a result, ∀x ∈ R∗+, we can write:

P [Sn(x+2tp)] ≤ P [∩n−1
k=0E(k,x)] = Πn−1

k=1P [E(k,x) | E(k−1,x), .., E(0,x)] × P [E(0,x)] ≤

(1− qe−λ(x+2tp)[e(λx)/q − 1])n

And in particular, P [Sn(x+2tp)] ≤ minx>0(1− qe−λ(x+2tp)[e(λx)/q − 1])n

• Finally, for a given time interval of T seconds, we can write:

P [ST] ≤ minx>0(1− qe−λ(x+2tp)[e(λx)/q − 1])
b T
x+2tp

c

Where b.c denotes the floor function.

The objective function on the right-hand side of this inequality is not smooth due to
the presence of the floor function. As a result, finding a closed form analytical solution
might prove difficult. However, numerical methods could be employed to find the
optimal upper bound. Observe that this upper bound decays exponentially with T and
eventually converges to 0 when T →∞. We use the value of tp = 13.3s that
corresponds to the average block propagation delay to reach 99% of the network
observed over a period of time extending from May 1st 2018 to August 18th 2018 [2].

10

2018 Bassam El Khoury Seguias ©

Below, we include various graphs of this upper bound for different values of T and for
fixed λ = 1

600
blocks/s, tp = 13.3s, and q = 5000 miners.

These graphs show that for the pre-defined values of λ, tp and q, the probability that
a natural fork survives T = 20 minutes (which on average corresponds to the addition of
2 new blocks on the blockchain) is upper-bounded by 0.25 (or almost 1 in 4 cases).
When T = 60 minutes (i.e., the duration required to add an average of six new blocks
on the blockchain), the upper bound goes down to 0.015 (or almost 1 in 67 cases). And

11

2018 Bassam El Khoury Seguias ©

when T = 120 minutes, it goes down to 0.00022 (or almost 1 in 4500 cases).

In the graphs above, we assumed a fixed block rate λ of 1 block per 10 minutes. This
is the value used in the Bitcoin protocol. For what it is worth, one could further
optimize the upper bound over positive values of λ. For fixed tp, q, and T, the tightest
upper bound becomes:

minx,λ>0(1− qe−λ(x+2tp)[e(λx)/q − 1])
b T
x+2tp

c

In order to solve it, we first find the optimal value of λ = λ∗(x) that solves the following
optimization problem:

minλ>0(1− qe−λ(x+2tp)[e(λx)/q − 1])
b T
x+2tp

c

Note that since the exponent appearing in the objective function does not depend on λ,
and since the base is a positive quantity, we can solve the following equivalent
optimization problem whose objective function is now smooth:

minλ>0(1− qe−λ(x+2tp)[e(λx)/q − 1])

Note that when λ = 0 or when λ→∞, the objective function tends to 1. The objective
function turns out to be convex in λ and we can solve for λ∗(x) by setting its first
derivative with respect to λ equal to 0. Doing so, yields:

λ∗(x) = (q
x
) ln(q(x+2tp)

(q−1)x+2qtp
).

The tightest upper bound over all positive values of x and λ can then be written as:

minx>0(1− qe−λ∗(x+2tp)[e(λ∗x)/q − 1])
b T
x+2tp

c

For each of the following graph, we let tp = 13.3s, q = 5000 miners. and specify a
particular value for T. For each value of x, we then calculate the corresponding λ∗ as

outlined above, and plot the graph of (1− qe−λ∗(x+2tp)[e(λ∗x)/q − 1])
b T
x+2tp

c
:

12

2018 Bassam El Khoury Seguias ©

Objective #4: A non-trivial upper bound on the probability of a
double-spend transaction coexisting with the legitimate transaction T
seconds after the legitimate transaction is added to the blockchain:

The derivations above demonstrate that even if all miners were honest, forks are
bound to happen, although they collapse with high likelihood after a finite time of their
formation. The existence of natural forks could encourage dishonest customers to
engage in double-spending behavior.

To see how, consider a scenario in which a customer spends some satoshis to purchase
a physical product. Let the transaction be denoted Tlegit. Suppose that at t = 0, the
vendor sees his transaction Tlegit included in block #B for the first time on the
blockchain. Suppose that the customer issues another transaction Tmalicious (before or
after t = 0) destined to himself and that uses the same UTXOs as Tlegit. There is a
chance that both Tlegit and Tmalicious be selected by two different miners and included in
two separate coexisting blocks. We define the following double-spending event:

DST ≡ ”Tmalicious and Tlegit coexist on the blockchain T seconds after Tlegit’s addition to
the blockchain in block #B”

Note that if no fork is formed at or before block #B, then Tmalicious will not
constitute a double-spending risk since Tlegit would have propagated to all nodes.
Consequently, a necessary condition for a double-spending risk to exist consists of the
union of the following events:

• DB ≡ ”A fork is formed at block #B and Tmalicious is added to this fork at some
point in time. All miners shared a unified view of the blockchain right before #B’s
addition”

13

2018 Bassam El Khoury Seguias ©

• DBp ≡ ”A fork was formed at some block #Bp preceding #Band Tmalicious is added
to this fork at some point in time. All miners shared a unified view of the
blockchain right before #Bp’s addition”

We would like to calculate a non-trivial upper bound on P [DST]. We can write:

P [DST] = P [DST ∩ DB] + P [DST ∩ DBp]

1. P [DST ∩ DB] = P [DST | DB]× P [DB]

We saw earlier that P [DB] ≤ 1− e−qλmax(
∫∞
0 g(t)dt). Moreover, DST | DB ⇒ ST .

And so P [DST | DB] ≤ P [ST] ≤ minx>0(1− qe−λ(x+2tp)[e(λx)/q − 1])
b T
x+2tp

c

Assuming that T > x+ 2tp, we get

P [DST | DB] ≤ minx>0(1− qe−λ(x+2tp)[e(λx)/q − 1])
T

x+2tp
−1

2. Let k be a non-negative integer and let ∆t be an arbitrary interval of time.
Without loss of generality, assume block #B was added at t = 0. Define DBp,k ≡
”Block #Bp preceding #B was created in interval [−(k + 1)∆t,−k∆t), a fork was
formed at #Bp and Tmalicious is added to this fork at some point in time. All
miners shared a unified view of the blockchain right before #Bp’s addition”.

We can write:

P [DST ∩ DBp] = lim∆t→0 Σ∞k=0 P [DST ∩ DBp,k]

= lim∆t→0 Σ∞k=0 P [DBp,k]× P [DST | DBp,k]

Note that

• P [DBp,k] = P [DBp,k ∩ DBp] = P [DBp] × P [DBp,k | DBp].

• DBp,k | DBp ⇒ At least one block is added in interval [−(k + 1)∆t, −k∆t)].

• DST | DBp,k ⇒ ST+k∆t

We then have:

P [DBp,k] ≤ P [DBp]× P [At least one block is added in [−(k + 1)∆t, −k∆t)]

As a result,

P [DST ∩ DBp] ≤

lim∆t→0 {P [DBp]× (1− e−λ∆t) Σ∞k=0 minx>0(1− qe−λ(x+2tp)[e(λx)/q − 1])
bT+k∆t
x+2tp

c}

14

2018 Bassam El Khoury Seguias ©

Assuming T > x+ 2tp, we get P [DST ∩ DBp] ≤

lim∆t→0 {P [DBp]× (1− e−λ∆t) Σ∞k=0 minx>0(1− qe−λ(x+2tp)[e(λx)/q − 1])
T+k∆t
x+2tp

−1}

In the limit when ∆t becomes infinitesimally small and tends to dt, the quantity
(1− e−λ∆t) tends to λdt. We can then write

P [DST ∩ DBp] ≤ P [DBp] minx>0

∫∞
0
λ(1− qe−λ(x+2tp)[e(λx)/q − 1])

T+t
x+2tp

−1
dt

= P [DBp] minx>0
−λ(x+2tp)

ln(1−qe−λ(x+2tp)[e(λx)/q−1])
(1− qe−λ(x+2tp)[e(λx)/q − 1])

T
x+2tp

−1

Similar to P [DB], we have P [DBp] ≤ 1− e−qλmax(
∫∞
0 g(t)dt).

We then conclude that P [DST] ≤

minx>0 (1−e−λ(
∫∞
0 g(t)dt)) × (1−qe−λ(x+2tp)[e(λx)/q−1])

T
x+2tp

−1
(1− λ(x+2tp)

ln(1−qe−λ(x+2tp)[e(λx)/q−1])
)

The graphs below depict the upper bound on the probability that a double spend
transaction Tmalicious coexists with Tlegit on the blockchain T seconds after Tlegit is added
to block #B, for various values of x and T.

The above graphs show that if before handing over the goods, the vendor waits for an
additional T = 20 minutes after he sees Tlegit added to block #B on the blockchain
(which at a block rate of λ = 1

600
blocks/s would roughly correspond to two additional

blocks on top of #B), then for λ = 1
600

blocks/s, tp = 13.3s, q = 5000, and all miners
being honest and sharing the same hash rate, the probability of a double-spend attempt
coexisting with Tlegit at time T is upper-bounded by 0.00149. That means that there is

15

2018 Bassam El Khoury Seguias ©

at most a probability of 0.00149 that Tmalicious is still part of a parallel fork. By virtue
of being sustained, it could still become part of the longest chain. If this happens, Tlegit
gets thrown back into the mempool and Tmalicious gets validated instead. On the other
hand, waiting for an an additional T = 50 minutes (i.e., roughly 5 additional blocks on
top of #B), would bring down this probability to 0.000183.

One could also optimize the upper bound not only over x but also over λ. Below is a plot
showing the optimal value for the case T = 60 minutes. In this case, the tightest upper
bound is 1.33 ×10−7, which is achieved for λ ≈ 0.01476 blocks / sec and x ≈ 33.5 sec.

A small note on the value of λ : To the extent of our knowledge, Satoshi’s choice
of λ = 1

600
blocks/s is not the result of a pure mathematical optimization exercise. The

larger the value of λ, the higher the probability of a natural fork occurring. Natural
forks are not desirable as they possibly pave the way to double-spending attempts.
Another important consideration has to do with the storage capacity requirement and
the rate of growth of such capacity that needs to be maintained at the level of each full
node on the network. A higher λ means faster transaction processing but also faster
growth of ever-increasing storage requirement. It is most likely that only a handful of
nodes would be able to afford such storage requirements, subsequently leading to a
centralization scenario. This stands in sharp contrast with Bitcoin’s fundamental
philosophy. On the other hand, a very small λ would cause the network to be painfully
slow. As a result of this tradeoff, Satoshi’s choice of λ = 1

600
blocks/s is probably a good

compromise.

16

2018 Bassam El Khoury Seguias ©

3 Probability that dishonest miner(s) succeed in

creating a dominant fork: 51% attack

In this section we look at the second type of imperfections. More specifically, we turn
to the possibility that a subset of dishonest miner(s) decide to disregard the PoW
consensus protocol and mine on top of a parallel chain different than the one with the
highest amount of cumulative work.

This type of behavior has been introduced and analyzed in section 11 of Nakamoto’s
seminal paper [3]. The analysis demonstrates that dishonnest miner(s) could possibly
generate a parallel chain that overtakes the original honest chain. As a consequence,
malicious miner(s) could potentially engage in double spending behavior.

Such a scenario is commonly referred to as a 51% attack, although malicious
miner(s) do not necessarily need 51% of the total hashing power of the network to
launch a double spending attack. A control of 51% or more of the total hashing power
will however guarantee that the attack will be successful. On the other hand, control
of less than 51% is not associated with a deterministic state of success, but rather a
probabilistic one. The analysis in [3] quantifies the probability of success as a function
of said control. In this section, we simply clarify the mathematical foundation of this
analysis.

Building on the notation used in section 2, we define the following quantities:

• Let {mi1 , ...,mis} ⊂ {m1, ...,mq} be the subset of malicious miner(s) staging a
51% attack.

• Let r =
Σsj=1λij

λ
denote the fraction of the total hashing power controlled by the

malicious miner(s). Note that in [3], this quantity is denoted by q (in our
notation, q refers to the total number of miners).

• Let p = 1− r denote the fraction of the total hashing power controlled by the
honest miners.

• Let Tlegit correspond to the legitimate transaction against which {mi1 , ...,mis} will
stage a 51% attack, and let #B be the block containing Tlegit.

• Let (∆t)z denote the interval of time extending from the moment Tlegit was added
to #B to the time the zth subsequent block following #B got added to the honest
chain.

We also define the following two events:

1. A51
r,z ≡ ”The subset of malicious miner(s) with a fraction r of the network’s total

hashing power conduct a successful 51% attack on Tlegit, and Tlegit has been
previously validated by the addition of z blocks on top of #B on the honest chain.”

2. Mk,r,z ≡ ”The subset of malicious miner(s) with a fraction r of the network’s total
hashing power created and added k blocks to the parallel chain in interval (∆t)z.”

17

2018 Bassam El Khoury Seguias ©

We can write:

P [A51
r,z] = Σ∞k=0 P [A51

r,z ∩ Mk,r,z] = Σ∞k=0 P [A51
r,z |Mk,r,z]× P [Mk,r,z]

Calculating P [Mk,r,z] : Given a network block rate of λ blocks/sec, the rate
associated with honest miners is pλ blocks/sec, and that associated with malicious
miner(s) is rλ blocks/sec. As a result, (∆t)z = z

pλ
sec. In this interval, the subset of

malicious miner(s) generate an average of (rλ).(z
pλ

) = r
p
z blocks. As a result, we can

model malicious miner(s) block generation over this inteval as a Poisson process with
mean r

p
z blocks. We get:

P [Mk,r,z] =
(r
p
z)k e

− rp z

k!

Calculating P [A51
r,z |Mk,r,z] : Knowing that in interval (∆t)z the malicious miner(s)

generated k blocks on the parallel chain, we need to calculate the probability that the
malicious miner(s) catch-up to the honest chain and generate a parallel chain that is at
least as long (note that technically speaking, the parallel chain should be one block
longer than the honest chain for the attack to be successful, but Nakamoto’s analysis
considers the case of equal length instead). Clearly, if k ≥ z, the probability is 1. When
k < z, we can model the process as a binomial random walk whereby given that the
malicious miner(s)’s parallel chain is (z − k) blocks shorter than the honest chain:

a Every time the malicious miner(s) generate a new block, the gap gets reduced by
1.

b Every time the honest miners generate a new block, the gap gets increased by 1.

c Otherwise, the gap remains the same.

This problem turns out ot be a slight variant of the Gambler’s Ruin Problem that
we introduce next.

• The Gambler’s Ruin Problem:

{ The setting consists of a gambler who initially has x > 0 units of currency
(UOC for short).

{ The gambler engages in a series of bets whereby every time she wins she gets
UOC 1, and every time she loses, she gives UOC 1.

{ Suppose that the gambler has a probability 0 ≤ w < 1 of winning each bet
and a probability l = 1− w of losing. All bets are mutually independent.

{ The objective is for the gambler to reach a fortune of UOC f > x before
losing all her capital. As a result, the process will stop if either the gambler
accumulates UOC f or if she sees her capital reduced to 0.

In what follows, we calculate the probability that the gambler wins knowing that
she started the game with UOC x. This is the probability that she reaches a
fortune of UOC f at some point in time knowing that she started off with UOC x.

18

2018 Bassam El Khoury Seguias ©

We denote it by w(f,x). A similar derivation can be found in [5] and [4]. Note that
in this version of the game, the gambler cannot play if she does not have a
positive amount of capital to start the betting process with. This stands in
contrast to the aforementioned situation where malicious miner(s) start off with a
block deficit. Later on, we will account for this variation.

We start by defining the following events:

{ W ≡ ”The gambler wins”

{ W1 ≡ ”The gambler wins the first bet in the series”

{ L1 ≡ ”The gambler looses the first bet in the series”

And let X be a random variable denoting the amount of capital held by the
gambler at the beginning of the game.We can write:

P [W | X = x] = P [W ∩W1 | X = x] + P [W ∩L1 | X = x]

= P [W | X = x, W1]× P [W1 | X = x] + P [W | X = x, L1]× P [L1 | X = x]

= P [W | X = x+ 1]× P [W1 | X = x] + P [W | X = x− 1]× P [L1 | X = x]

In other terms, we have:

w(f,x) = w.w(f,x+1) + l.w(f,x−1)

⇐⇒ (w + l).w(f,x) = w.w(f,x+1) + l.w(f,x−1)

⇐⇒ (w(f,x+1) − w(f,x)) = (l
w

).(w(f,x) − w(f,x−1))

⇒ w(f,x+1) − w(f,x) = (l
w

)x. w(f,1), since w(f,0) = 0

We can write:

w(f,x+1) − w(f,1) = Σx
j=1(w(f,j+1) − w(f,j)) = [Σx

j=1(l
w

)j]. w(f,1)

And so, w(f,x) = [Σx−1
j=0 (l

w
)j]. w(f,1) =

{ [
1−(l

w
)x

1− l
w

]. w(f,1), if w 6= l

{ x. w(f,1), if w = l = 1
2

19

2018 Bassam El Khoury Seguias ©

Noting that 1 = w(f,f) and applying the above when x = f, we get

{ 1 = [
1−(l

w
)f

1− l
w

]. w(f,1) , if w 6= l

{ 1 = f. w(f,1), if w = l = 1
2

Which then allows us to conclude that w(f,1) =

{ [
1− l

w

1−(l
w

)f
], if w 6= l

{ 1
f
, if w = l = 1

2

Putting it altogether, we get w(f,x) =

{ [
1−(l

w
)x

1−(l
w

)f
], if w 6= l

{ x
f
, if w = l = 1

2

• Adapting the Gambler’s Ruin Problem to the case of a 51% attack: In
the context of a 51% attack, and for k < z, P [A51

r,z |Mk,r,z] is the probability that
the subset of malicious miner(s) catch up to the honest chain when the malicious
miner(s)’ parallel chain is (z − k) blocks behind. In other terms, the malicious
miner(s) have a deficit of (z − k) blocks at the beginning of the process and we are
interested in calculating the probability that they catch-up at some point in time.
Note that under this setting, the block deficit may widen without having any
lower-bound constraint.

In the setting of the Gambler’s Ruin Problem, the gambler cannot play when she
is in a deficit and will have to stop as soon as her betting capital reaches 0. As
such, the problem must be modified to account for a scenario where the gambler
could borrow unlimited credit if need be, to continue playing the game.

An equivalent formulation consists of a gambler having an infinite amount of
capital to start with. Formally, we assume the same setting as the original
problem. The gambler however, has a deficit of UOC d. She then borrows UOC
x > d and starts the game with the objective of reaching UOC f where f = x+ d.
If she wins, she returns UOC x to her creditor and keeps UOC d so as to
break-even. In case she loses, she does not return anything to her creditor.

We then let x→∞, and compute the corresponding probability of success. In our
block deficit case, d = z − k blocks.

20

2018 Bassam El Khoury Seguias ©

We get limx→∞ [w(x+(z−k), x)] =

{ limx→∞ [
1−(l

w
)x

1−(l
w

)x+(z−k)], if w 6= l

{ limx→∞ [x
x+(z−k)

], if w = l = 1
2

Next, note that if w < l, then limx→∞(l
w

)−x = 0. And so

limx→∞ [
1−(l

w
)x

1−(l
w

)x+(z−k)] = limx→∞ [
(l
w

)−x−1

(l
w

)−x−(l
w

)(z−k)] = (w
l
)(z−k)

And if w > l, then limx→∞(l
w

)x = 0. And so

limx→∞ [
1−(l

w
)x

1−(l
w

)x+(z−k)] = 1

Finally, if w = l, then limx→∞ [x
x+(z−k)

] = 1.

As a result, limx→∞ [w(x+(z−k), x)] = (w
l
)(z−k) if w < l, and 1 if w ≥ l

If malicious miner(s) are not incurring a block deficit, i.e., k ≥ z, then

P [A51
r,z |Mk,r,z] = 1

Otherwise, if k < z, then noting that the probability of malicious miner(s) finding
the next block is equal to r and the one corresponding to the honest miners is
equal to p, we get:

P [A51
r,z |Mk,r,z] = (r

p
)(z−k) if r < p, and 1 if r ≥ p

The calculations above allow us to conclude that:

P [A51
r,z] = Σz−1

k=0 [
(r
p
z)k e

− rp z

k!
(r
p
)(z−k)] + Σ∞k=z [

(r
p
z)k e

− rp z

k!
]

= Σz−1
k=0 [

(r
p
z)k e

− rp z

k!
(r
p
)(z−k)] + 1− Σz−1

k=0 [
(r
p
z)k e

− rp z

k!
]

= 1− Σz−1
k=0 [

(r
p
z)k e

− rp z

k!
][1− (r

p
)(z−k)], if r < p

and P [A51
r,z] = Σ∞k=0 [

(r
p
z)k e

− rp z

k!
] = 1, if r ≥ p

In the graphs below we plot the probability of a successful 51% attack as a function of
the fraction r of the total hashing power controlled by the subset of malicious miner(s).

21

2018 Bassam El Khoury Seguias ©

We do so for different values of the block validation height z :

For example, assuming that malicious miner(s) controlled 15% of the total hashing
power of the network (i.e., r = 0.15), then a block validation height of 6 blocks (i.e.,
z = 6) is associated with a probability of a successful attack of 0.268%.

References

[1] Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin
network, 2013.

[2] DSN. Block propagation delay history. https://dsn.tm.kit.edu/bitcoin/.

[3] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. White Paper,
2008.

[4] A. Pinar Ozisik and Brian Neil Levine. An explanation of nakamoto’s analysis of
double-spend attacks. https://arxiv.org/pdf/1701.03977.pdf, 2017.

[5] Karl Sigman. Gambler’s ruin problem.
http://www.columbia.edu/ ks20/FE-Notes/4700-07-Notes-GR.pdf, 2016.

22

