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1 Introduction

In the physical realm, paper fiat currencies are almost impossible to duplicate. As a
result, a spent US Dollar bill cannot be concurrently used by the same payor in a different
transaction. In digital space, one could also rule out double spending occurrences by
setting up a central arbiter. In this case, the central authority (e.g., a bank) would
decide on the fate of a transaction. However, such central arbiters do not exist in de-
centralized structures. Up until Bitcoin, all decentralized attempts suffered from the
possibility of duplicating digital units and spending them more than once.

Any decentralized solution to the double spending problem requires the relevant par-
ticipants to reach consensus and agree on the ordering of transactions. This will
ensure the recording of when digital unit(s) of money were spent and invalidate any
attempt by their previous owner to reuse them. Bitcoin’s innovation lies in its ability
to offer such a solution even when a minority of participants may act maliciously. The
elements of the Bitcoin Consensus (also known as the Nakamoto Consensus) span
transactions, blocks and the blockchain. We will discuss them in a subsequent post. In
this chapter, we introduce the problem of reaching consensus in distributed sys-
tems, of which the Bitcoin network is an instance.

In section 2, we provide a brief introduction to these systems and highlight that
the consensus problem is intimately linked to the underlying system parameters. The
set of relevant parameters typically includes the network topology, the nodes config-
uration, the reliability of the communication channel, the synchronicity model,
the types of messages exchanged, the failure regime of nodes, and whether consensus
is achieved in a deterministic or a randomized way.

In section 3, we discuss the classical Byzantine Generals Problem (BGP) intro-
duced by Lamport et al. [5], [6]. The classical BGP result is easy to state but its proof is
not necessarily straightforward. Given its importance and historical value, we revisit the
proof in the hope of making it easier to follow. The Byzantine Generals Problem became
an allegorical representation of that of reaching consensus in distributed systems. It is
commonly stated that ”Bitcoin solves the BGP”. However, Bitcoin’s consensus problem
is defined on a system whose parameters differ from those of the classical BGP. We will
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revisit this in a subsequent post.

In section 4, we look at a different class of system models which includes fully asyn-
chronous distributed systems over which consensus must be achieved deterministi-
cally. We state and prove the seminal result that such a consensus is impossible to
achieve in the presence of even a single faulty node. This is known as the FLP im-
possibility result in reference to its authors Michael J. Fischer, Nancy Lynch, and Mike
Paterson.

2 Distributed systems

We define a distributed system to be a set of nodes spread-out across space.
Each node runs a distinct process and can communicate with other nodes. For all
practical matters, one can think of a node as a separate computer and the act of running-
a-process as that of executing a specific task or computation. Moreover, a client that uses
the distributed system does not perceive its nodes as separate entities but rather as part
of a unit. In this unit, processes are executed in order to achieve a common purpose.

It is conceivable for a given node to run a process while at the same time be in control
of its rules of execution (e.g., mandate when to run a process). In general however, one
cannot necessarily assume that execution and governance (i.e., the particular model
of control or ownership) are carried out by the same entity. A centralized governance
is one where the ruling over the system is concentrated (e.g., in an individual, an organi-
zation, a state). On the other hand, the ruling in a decentralized system is spread over
multiple entities.

An important implication is that a distributed system can be centralized. For ex-
ample, Facebook runs a centralized model where decision-making power is concentrated
within the organization. It remains nevertheless a distributed system where different
servers and computers implement different processes. Bitcoin on the other hand, is an
example of a distributed system that is also decentralized for anyone can join or leave
the network and run an independent node.

In what follows, we describe some of the merits of distributed systems. We also
showcase the importance of reaching agreement in such structures and highlight some
of the challenges of doing so in the presence of faults. We finally introduce the notion
of consensus and the parameters that characterize its associated system model.

The merits of a distributed system - In order to better appreciate the value of a
distributed system, we mention three of its potential advantages over its non-distributed
counterpart:

1. Better scaling: In a scenario where a particular node receives excessive traffic,
there may be a threshold beyond which the node’s performance becomes noticeably
impacted. One could upgrade the processing power of the node but the merits of
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this vertical scaling are bound to reach a limit. A more suitable alternative would
be to distribute the workload by adding more nodes to the system.

2. Higher resilience: In a single-node system, any failure could be severely dam-
aging. In order to mitigate the risk of a single-point failure and increase the level
of tolerance for faulty behavior, one can create more redundancy by adding more
nodes.

3. Lower latency: If the system’s clients were spread across the globe, information
would have to travel for longer distances resulting in longer latencies. This can
be improved by geographically distributing a richer set of nodes.

The need for agreement in a distributed system - In a distributed system where
different nodes run their own processes, communicate with each other, and alter their
perceptions of the state of the system accordingly, these nodes may end up having different
concurrent views of the system. The need to agree on a common view is imperative in
certain cases as highlighted by the following three examples:

1. The distributed Transaction-Commit problem: A transaction gets divided
into processes run by different nodes. The objective is to decide whether or not to
commit the transaction to a given database. The important consideration is that
if any node rejects it, then all nodes must do so too. Otherwise, the system’s view
will be inconsistent as some nodes agree to include it while others don’t. A com-
mitment of the transaction must occur if and only if all relevant nodes agree to do so.

2. State Machine Replication (SMR) systems: A state machine reflects the
state of a system at a given point in time. It takes a set of inputs or commands,
performs a set of operations (collectively defining a transition function), and then
computes an output used to update the state of the system. An SMR distributed
system consists of various nodes that are all supposed to run the same transition
function. In order to ensure a consistent view of the system’s state, there needs to
be agreement on the inputs to the transition function i.e., the current state of the
system as well as inputs used to alter it.

A client may send a number of sequential requests to an SMR system. The ordering
of these requests is paramount and any two nodes executing them out of order will
have two conflicting views of the state of the system. This is known as the log
replication problem (it is a reference to the idea that the sequence of commands
is stored in a log). Assuming that all nodes operate the same deterministic tran-
sition function, an agreement in this context corresponds to an alignment among
all nodes on the sequencing of the commands.

One important example of an SMR is the Bitcoin ledger. The state of the system at
a given time corresponds to the set of Unspent Transaction Outputs (UTXO)
(the reader can refer to the chapter entitled Bitcoin Transactions (pre-segwit) for
an introduction to UTXOs). Simply stated, this set corresponds to all public keys
holding unspent satoshis. Inputs that alter the state of the ledger consist of valid
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Bitcoin transactions. Transactions however must be executed in a well-defined se-
quence agreed upon by all nodes. Otherwise, a Bitcoin transaction considered as
valid by one node could be invalidated by another. We will discuss the building
blocks and details of the Bitcoin consensus protocol in a later post.

3. Clock synchronization: In order for a system’s nodes to execute certain processes
in a well-defined order, they need to share a common view of time. The challenge
is that the internal clocks of nodes differ in the way they count the passage of
time. The difference is due to clock drift, usually caused by relativistic effects.
Clock synchronization is the problem of coordinating the clocks of various nodes
at regular time intervals to ensure ordered execution of events. This problem can
be equivalently stated as one of reaching agreement on a common value of time
between various nodes.

The challenge of reaching agreement in the presence of faults - In light of the
above examples, it becomes clear that some distributed systems must ensure that their
nodes reach agreement. In a perfect world where nodes relay information truthfully,
agreement could be easily achieved. For example, each node could be requested to relay its
information to peers and then have all nodes apply a common function. Nodes however,
may not be truthful all the time. In general, one assumes that a certain maximal number
of them can be faulty. The behavior of faulty nodes is specified by a pre-defined failure
model which may consist of:

• Crash failure: In this model, a node can either be fully operational or out of
order. In particular, a node may fail in the middle of an execution. As a result, it
could have sent information to only a small subset of its peers before crashing.

• Omission failure: Information sent by a node may not be received by a peer. This
can be due to various factors including transmission problems or buffer overflow.

• Byzantine failure: Byzantine faults are the weakest form of failures in the sense
that faulty nodes can behave arbitrarily without abiding by specific constraints. In
a byzantine regime, a faulty node can act maliciously vis-a-vis one of its peers at a
certain time instance and honestly at another. In this context, malicious behavior
is to be understood in its general form including e.g., communicating wrong in-
formation to peers or abstaining from sending or relaying any information. These
faults are particularly important in a decentralized setting.

Consensus in distributed systems - The real challenge with distributed systems
is to reach agreement in the presence of faulty behavior. More formally, the act of
reaching agreement is encapsulated in the notion of achieving consensus. An algorithm
is said to achieve consensus in a distributed system if it guarantees that the following
three criteria are met:

• Agreement: All non-faulty nodes (also known as correct nodes) must agree on the
value (or array of values) that they compute. In other words they must all share
the same value(s) after the algorithm is executed.
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• Validity: In the absence of any constraint, non-faulty nodes could agree on trivial
values irrespective of the nature of the problem. In order for them to be meaningful,
agreed-upon values must satisfy more stringent constraints. The validity criterion
ensures that non-faulty nodes decide on ”acceptable” value(s) for some notion of
”acceptable”. Different validity requirements lead to different types of consensus.

• Termination: All non-faulty nodes must eventually decide on a value (or array of
values).

The above criteria are usually expressed in terms of safety and liveness properties.
Informally, safety is a property that must be continuously observed by the system in
order to ensure that no ”bad” outcome occurs. Liveness on the other hand, guarantees
that a ”good” outcome will eventually take place. Liveness properties do not need to be
continuously observed but must eventually be met:

• The Agreement criterion ensures that non-faulty nodes never diverge in their deci-
sion making. It is thus considered a safety property.

• The Validity criterion guarantees that non-faulty nodes never choose an inadequate
value. As a result, it is also considered a safety property.

• The Termination criterion on the other hand, guarantees that eventually every non-
faulty node will decide on a value. It is hence a liveness property.

The aforementioned Termination criterion requires that for each and every itera-
tion of the consensus algorithm, non-faulty nodes decide on a value (or array of values).
This definition characterizes a class of consensus algorithms known as deterministic.
Termination could also be defined stochastically, leading to the class of randomized
consensus algorithms. In this case, it becomes:

• Termination: All non-faulty nodes must eventually decide on a value (or array of
values) with probability 1.

In other words, some executions of the algorithm may fail to terminate as long as the
probability of it happening approaches 0 when the number of executions tends to infinity.

System model specification - The characterization of a distributed system requires
specifying a number of system parameters. They include:

• Nodes configuration: A system may consist of a pre-defined set of static nodes
that never changes over the course of execution. For instance, nodes could be
geographically spread servers deployed by an organization to service its global client
base. Configurations could also be dynamic (e.g., Bitcoin) with different nodes
joining or leaving at various points in time.

• Network topology: Nodes may be connected in various ways. For instance, a
node can be linked to a select set of peers or to every other node as part of a
complete graph topology.
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• Communication channel reliability: In addition to specifying the failure regime
of nodes, a full description of a distributed system requires defining the reliability
of its underlying communication channel. For all practical purposes, we will assume
that the infrastructure is reliable and limit faulty behavior to nodes.

• Communication delay: A system can be classified as synchronous, partially
synchronous or fully asynchronous. In a synchronous network, messages sent
are guaranteed to be delivered to peers within a fixed delay of ∆ seconds known a
priori. This presupposes that nodes have a common reference time against which
∆ is measured and is typically achieved through clock synchronization at regular
intervals called rounds. One advantage of synchronous systems is that nodes can
recognize if a message has not been sent by waiting ∆ seconds from the beginning
of a specific round.

A more realistic model is that of an asynchronous network where no guaran-
tees are imposed on message delivery delay except for the assurance that messages
sent will eventually be delivered. Contrary to the synchronous case, asynchronous
networks do not rely on a notion of a common reference time. An important re-
sult in distributed systems theory is the impossibility of achieving deterministic
consensus in a fault-tolerant asynchronous setting. This is the FTP impos-
sibility result [4] that we will discuss in section 3. The result ceases to hold if the
deterministic constraint is replaced by its randomized counterpart [1], underscor-
ing as such the importance of specifying the system parameters prior to solving for
consensus.

A model that lies midway between these two extremes, is the partially syn-
chronous one [2]. Partial synchrony comes in different flavors. One version assumes
the existence of a not known a priori upper-bound ∆ on the delay to deliver a
message from one node to a peer. Another version assumes that the bound is known
a priori but only guaranteed to apply starting at an unknown time instance.

• Message authentication: Two types of messages could affect the process of reach-
ing consensus in distributed systems. Unauthenticated or oral messages can be
tampered with. A malicious node could modify the content of a message it re-
ceived before it relays the altered version to a peer. It could also create a message
and claim that it received it from a peer. Authenticated or signed messages
on the other hand, are tamper-proof and forgery attempts will be detected with
overwhelming probability. As a result, solving for consensus with signed messages
is generally easier because the arsenal of malicious weapons does not include forgery.

In summary, consensus in distributed systems depends on a number of parameters.
In order to specify a consensus problem, one needs to define:

1. The system parameters including the nodes configuration and topology, re-
liability of the channel, synchronicity model, and types of messages.

2. The faulty nodes failure regime (e.g., byzantine).

3. The nature of the Termination criterion (i.e., deterministic or randomized).

4. The consensus problem as defined by the relevant validity criterion.
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3 The classical Byzantine Generals Problem

The Byzantine Generals Problem (BGP) introduced by Lamport et al. in 1982 [5]
describes how a distributed system can operate effectively even if some nodes fail under a
byzantine fault regime. It portrays the system as an army whose generals need to agree
on a common action plan (e.g., attack or withdraw) and where some may be traitors,
sending conflicting messages to peers. In essence, the BGP is an allegorical representation
of the problem of reaching consensus in distributed systems and is defined as follows:

1. System parameters:

• Nodes configuration: The system consists of a set P of n pre-defined and
static nodes (i.e., addition or removal of nodes is not allowed). Each node has
a device (e.g., a sensor) that runs a process p (e.g., a sensor measurement)
and computes a private value v (e.g., a reading from sensor measurement).

• Network topology: The network is modeled as a complete communication
digraph G with n nodes, where each two nodes are linked by a bidirectional
communication channel or edge.

• Communication channel reliability: The edges in G are assumed to be
fail-safe i.e., truthful with no error in communication.

• Communication delay: The edges in G exhibit negligible communication
delay. More importantly, the network is assumed to be synchronous.

• Message authentication: Messages are assumed to be unauthenticated
but the identity of the sender is always known to the receiver. Note that
in [5], the authors also consider a variant of the problem with signed messages
instead.

2. Failure regime: Although the communication channel over G is assumed to be
fail-safe, a subset of P may be faulty. We assume that at most m out of the n nodes
could be faulty under a byzantine failure regime.

3. Termination criterion: The model assumes a deterministic termination rule.

4. Agreement and validity criteria: Each non-faulty node in P computes an n-
vector whose ith entry is a value it calculates for the ith node such that:

• Agreement: All non-faulty nodes compute the same n-vector A = [v1, .., vn].

• Validity: If node i is non-faulty and its private value is v∗i , then the ith entry
of A computed by all non-faulty nodes is v∗i . In other words, vi = v∗i .

This is known as the Interactive Consistency (IC) formulation of the classical
BGP [6]. Note that these criteria do not require specifying which nodes are faulty.
Furthermore, the elements of A corresponding to faulty nodes may be arbitrary.
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It turns out that the (IC) formulation can be equivalently expressed in two other
ways: A Byzantine Generals (BG) formulation and a Consensus (C) one.
The (BG) formulation introduced in [5] states that a General in the Byzantine
army must send a value v∗ to his lieutenants such that:

• Agreement: Honest lieutenants (i.e., non-faulty nodes) agree on a value v.

• Validity: If the General is honest (i.e., source node is non-faulty), then v = v∗.
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In the (C) formulation [3], each node is endowed with an initial value and the
Agreement and Validity criteria become:
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• Agreement: All non-faulty nodes agree on the same single value v.

• Validity: If all non-faulty nodes share the same initial value v∗, then their
agreed upon value must be v∗.
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BGP formulations equivalence: In what follows we prove the equivalence of all
three formulations. More specifically, we show that an algorithm that can solve one of
the problems can also be used to solve the other two. We denote by FC , FBG, and FIC
any algorithms that respectively solve the (C), (BG), and (IC) formulations of the clas-
sical BGP.

• If there exists an FC then there exists an FBG: Without loss of generality,
assume that the initial state of the (BG) formulation consists of general i communi-
cating his private value v∗ to his lieutenants. Conduct one round of communication
and let v∗j be the value received by lieutenant j. Set it as node j’s initial value.
Clearly, we also have that node i’s initial value is v∗i = v∗. Now run FC on these
initial states:

o Since the Agreement criteria of (C) ensures that all non-faulty nodes agree on
the same single value v, all honest lieutenants will certainly agree on the same
value v. This guarantees the Agreement criteria of (BG).

o Now suppose that the general is honest (i.e., node i is non-faulty). Then all
non-faulty lieutenants will share the same initial value v∗j = v∗ (i.e., the gen-
eral’s private value). The Validity criteria of (C) would then ensure that their
agreed upon value is v∗. This proves that the Agreement criteria of (BG) is
satisfied.

• If there exists an FBG then there exists an FIC: For each non-faulty node
j ∈ {1, .., n} let v∗j denote its private value and associate with it an n-dimensional
vector Aj whose entries are all initialized to 0 except for the jth entry whose value
is set to v∗j . In other words, Aj is initially set to [0, .., 0, v∗j , 0, .., 0].

For each node i ∈ {1, .., n} run FBG with node i acting as general. Upon termi-
nation, update the ith entry of each Aj with the resulting value computed by node j:

o If i were a non-faulty node, then the (BG) Agreement and Validity criteria
will ensure that all non-faulty lieutenants agree on the same value v∗i . As a
result, the ith entry of each Aj will be the same and equal to v∗i .

o If i were a faulty node, then the (BG) Agreement criterion will ensure that all
non-faulty lieutenants agree on some common value. As a result, the ith entry
of each Aj will be the same.

This construction guarantees the Agreement and Validity criteria of (IC).
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• If there exists an FIC then there exists an FC: For each non-faulty node j let
v∗j denote its private value. Without loss of generality, suppose that the first n−m
nodes are non-faulty (i.e., j ∈ {1, .., n − m}). Run FIC to obtain an interactive
consistecy vector A = [v∗1, .., v

∗
(n−m), v(n−m+1), .., vn]. Note that the values vk

(n −m < k ≤ n) are arbitrary as they correspond to faulty nodes. Let each non-
faulty node pick the first entry of A (i.e., v∗1). This ensures that the Agreement and
Validity criteria of (C) are met:

o All non-faulty nodes agree on the same single value, namely v∗1

o If all non-faulty nodes shared the same initial value v∗, then v∗1 = v∗.

An impossibility result for the classical BGP: It is not always possible to achieve
consensus in a classical BGP setting. In [5] and [6], the authors showed that a necessary
and sufficient condition for this to happen is for the total number n of nodes to strictly
exceed three times the number m of faulty ones (i.e., n > 3m). We will lean on the (IC)
formulation to demonstrate that this condition is necessary by showing that it is impos-
sible to reach consensus if n ≤ 3m. We then rely on the equivalent (BG) formulation to
prove that the condition is sufficient by describing an algorithm that achieves consensus
whenever the condition is met [5].

We first start by formalizing the description of some of the system’s parameters intro-
duced earlier. Recall that the underlying communication network is a digraph G with n
nodes, at most m of which can be faulty. We succinctly denote this set-up by the triplet
(G, n,m). It is common to attach a processor pi to node i and let P be the set {p1, .., pn}.
For all practical matters, the terms processor and node can be freely interchanged. Each
processor has a private value (or initial state value) drawn from a set V . We let vi denote
the private value of pi

The objective is to devise an algorithm that can reach consensus irrespective of which
processors are faulty, as long as there are at most m of them. A particular instance of
(G, n,m) is called a system and is specified by:

1. The subset N ⊂ P of non-faulty processors. Note that |N | ≥ n−m.

2. The behavior σ of the processors as defined by the value that processor pk
receives for processor pj when the transmission happens over some path in P .
Clearly, if all processors were non-faulty, pk would receive the exact value sent by
pj. Faulty processors on the other hand, may behave maliciously and their
behavior may vary from one processor to another.

We denote the system associated with a given subset N and behavior σ by ξ(G,n,m), N , σ.
More formally, σ is defined as the map:

σ : {P}∗ −→ V

where {P}∗ is the set of all non-empty strings over P (i.e., paths in P) and V is an
appropriate set of initial state values. We require that this map satisfies the following:
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• Initial state specification: σ(pi) = vi. In other words, σ maps each processor to
its private value.

• Behavior: For any path pi1 pi2 pi3 .. pij−1
pij ∈ {P}∗, let

v ≡ σ(pi1 pi2 pi3 .. pij−1
pij) be interpreted as

”pi2 told pi1 that pi3 told pi2 that .. that pij told pij−1
that its value was v”.

Note that if q ∈ N , then ∀ w ∈ {P}∗ and ∀ p ∈ P , we expect σ(pqw) to be equal
to σ(qw). Indeed, by definition, a non-faulty q must truthfully communicate
whatever it receives. A behavior σ that ensures this condition is said to be
consistent with N .

We rely on this formalism to define the notion of interactive consistency. Let Z(G,n,m) be
the space of all allowable systems on (G, n,m) i.e., any system with:

• A set of non-faulty processors N satisfying |N | ≥ n−m, and;

• A behavior σ such that σ is consistent with N .

In what follows, it is understood that a system is defined on (G, n,m) and we write ξN ,σ
instead of ξ(G,n,m), N ,σ.

Define the map FIC to be:

FIC : Z(G,n,m) × P × P −→ V

(ξN ,σ , pi, pk) −→ FIC (ξN ,σ , pi, pk)

where for an allowable system ξN ,σ, the output corresponds to the value of processor pk
computed by processor pi in the (IC) formulation. If i = k, the output is taken to be pi’s
private value. The consistency vector computed by pi is then the n-dimensional vector:

A = [FIC (ξN ,σ , pi, p1), .., FIC (ξN ,σ , pi, pn],

Note that FIC (ξN ,σ , pi, pk) is calculated based on one or more pieces of information
available to processor pi. Each such piece of information is received by pi over some
path in {P}∗ and is hence of the form σ(pi r1 r2 ..) where r1, r2, ..,∈ P . We denote the
restriction of σ to paths in {P}∗ starting with pi by σpi .

We say that FIC solves the (IC) formulation if ∀ ξN ,σ ∈ Z(G,n,m), the following holds:

1. Agreement condition:
∀ pi, pj ∈ N , ∀ pk ∈ P , FIC (ξN ,σ , pi, pk) = FIC (ξN ,σ , pj, pk). Intuitively, this
condition requires that any two non-faulty processors share the same consistency
vector. This is the Agreement criterion of the (IC) formulation.

2. Validity condition: ∀ pi, pk ∈ N , FIC (ξN ,σ , pi, pk) = σ(pk). Intuitively, this
condition requires that the entry corresponding to a non-faulty processor pk in the
consistency vector computed by a non-faulty processor pi be pk’s private value.
This is the Validity criterion of the IC formulation.
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We can now formally state and prove the classical BGP’s impossibility result:

|V| ≥ 2 and n ≤ 3m =⇒ @ FIC that solves the (IC) formulation of BGP.

The proof is a reductio ad absurdum. Suppose that given |V| ≥ 2 and n ≤ 3m, one were
able to find such an FIC (i.e., an FIC that achieves consensus on any allowable system
ξN ,σ ∈ Z(G,n,m)). Our objective is to construct three systems whose coexistence would
contradict the Agreement criterion needed for FIC to be an acceptable solution.

Since n ≤ 3m, one can partition P into three non-empty subsets A,B, and C such that
max(|A|, |B|, |C|) ≤ m. Furthermore, since |V| ≥ 2, ∃ v, v′ ∈ V such that v 6= v′.

Consider the system ξN ,α where N ≡ B ∪ C, and α some behavior consistent with B ∪ C.
Then the system ξ(B∪C),α ∈ Z(G,n,m) since |B ∪ C| = |P −A| ≥ n−m. Similarly, we can
consider the two other systems ξ(A∪C),β and ξ(A∪B),γ in Z(G,n,m) where β is some behavior
consistent with A ∪ C and γ some behavior consistent with A ∪ B.

Suppose that in addition to being respectively consistent with B ∪ C, A ∪ C, and
A ∪ B, behaviors α, β, and γ also satisfied the following constraints:

• ∀ a ∈ A, behaviors β and γ are indistinguishable, i.e., βa = γa (recall that this
notation refers to the restriction of a behavior to paths in {P}∗ starting with a).

• ∀ b ∈ B, behaviors α and γ are indistinguishable, i.e., αb = γb.

• ∀ c ∈ C, α(c) 6= β(c).

We could then reach the desired contradiction as follows:

• FIC (ξ(A∪B),γ , a, c) solely depends on γa. And since γa = βa, it is equal to
FIC (ξ(A∪C),β , a, c).

• FIC (ξ(A∪C),β , a, c) = β(c) by the Validity criterion of (IC).

• β(c) 6= α(c) by design of the behaviors β and α.

• α(c) = FIC (ξ(B∪C),α , b, c) by the Validity criterion of (IC).

• FIC (ξ(B∪C),α , b, c) solely depends on αb. And since αb = γb, it is equal to
FIC (ξ(A∪B),γ , b, c).

• As a result, FIC (ξ(A∪B),γ , a, c) 6= FIC (ξ(A∪B),γ , b, c). This contradicts the
Agreement criterion of (IC) since γ is consistent with A ∪ B, and a, b ∈ A ∪ B.

Consequently, all that is needed to complete the proof is to construct α, β, and γ
satisfying these constraints. Now note that elements of {P}∗ can be of three types:

1. Strings w that don’t end with a processor in C. Let α(w) = β(w) = γ(w) = v.

2. Strings of length 1 or 2 that end with a processor in C. ∀ a ∈ A, b ∈ B c ∈ C, let

• α(c) = α(a c) = α(b c) = α(c c) = v
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• β(c) = β(a c) = β(b c) = β(c c) = v′

• γ(c) = γ(b c) = γ(c c) = v and γ(a c) = v′

3. Strings of length greater than 2 that end with a processor in C. For any string w
ending with a processor in C, and ∀ a ∈ A, b ∈ B, c ∈ C, p ∈ P , let

• α(p a w) = β(a w), α(p b w) = α(b w), and α(p c w) = α(c w)

• β(p a w) = β(a w), β(p b w) = α(b w), and β(p c w) = β(c w)

• γ(p a w) = γ(a w), γ(p b w) = γ(b w), γ(a c w) = β(c w),
γ(b c w) = α(c w), and γ(c c w) = γ(c w)

Note that by defining the action of the various behaviors on a string of length
l ≥ 2 in terms of the action of one of these maps on a string of length l − 1, one
can easily compute the actual values recursively as they have been previously
defined for the cases l = 1 and l = 2.

Clearly, behavior α is consistent with B ∪ C. Indeed, ∀ q ∈ B ∪ C (i.e., q is of the form b
or c), and ∀ p ∈ P and w ∈ {P}∗, we have α(p b w) = α(b w) and α(p c w) = α(c w).

Similarly, behavior β is consistent with A ∪ C since ∀ q ∈ A ∪ C (i.e., q is of the form a
or c), and ∀ p ∈ P and w ∈ {P}∗ we have β(p a w) = β(a w) and β(p c w) = β(c w).

Finally, behavior γ is consistent with A∪ B since ∀ q ∈ A ∪ B (i.e., q is of the form a or
b), and ∀ p ∈ P and w ∈ {P}∗, we have γ(p a w) = γ(a w) and γ(p b w) = γ(b w).

Next we show that ∀ a ∈ A, behaviors β and γ are indistinguishable (i.e., βa = γa,) and
∀ b ∈ B, behaviors α and γ are indistinguishable (i.e., αb = γb).

• First, note that ∀ w ∈ {P}∗ not ending in a processor in C, the construction
mandates that α(w) = β(w) = γ(w) = v. In particular this holds true for such
strings that start with a processor in A and so βa = γa = v. In addition, this holds
true for such strings that start with a processor in B and so αb = γb = v.

• To show it for strings w ∈ {P}∗ ending in a processor in C, we proceed by
induction on the length of w. If w is of length 1, i.e., w ∈ C, the construction
mandates that β(a c) = γ(a c) = v′ and so βa and γa are indistinguishable over
elements of C. Similarly, the construction mandates that α(b c) = γ(b c) = v and
so αb and γb are indistinguishable over elements of C.

Now suppose that the result holds true for strings w ∈ {P}∗ of length l > 1 that
end in a processor in C. Relevant strings of length l + 1 must be of the form
aw, bw or cw (a ∈ A, b ∈ B, c ∈ C). We must show that:

1. β(a a w) = γ(a a w), β(a b w) = γ(a b w), and β(a c w) = γ(a c w)

2. α(b a w) = γ(b a w), α(b b w) = γ(b b w), and α(b c w) = γ(b c w).

We will show it only for 1. as 2. can be done in exactly the same way:

o β(a a w) = β(a w) (by construction), which is equal to γ(a w) (by
induction), which in turn is equal to γ(a a w) (by construction).
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o β(a b w) = α(b w) (by construction), which is equal to γ(b w) (by induction),
which in turn is equal to γ(a b w) (by construction).

o β(a c w) = β(c w) (by construction), which is equal to γ(a c w) (by
construction).

Here is a summary of the three systems for the case n = 3 and m = 1 :

The intuition is as follows:

• From the point of view of processor a, systems ξ{a,b},γ and ξ{a,c},β are
indistinguishable because γ and β are identical when restricted to strings starting
with a. As a result, a cannot tell whether c is faulty (i.e., system ξ{a,b},γ is
applicable) or b is (i.e., system ξ{a,c},β is applicable). In order not to violate the
Validity condition in ξ{a,c},β, a is then forced to register for c the value β(c) = v′.

• Similarly, from the point of view of processor b, systems ξ{a,b},γ and ξ{b,c},α are
indistinguishable because γ and α are identical when restricted to strings starting
with b. As a result, b cannot tell whether c is faulty (i.e., system ξ{a,b},γ is
applicable) or a is (i.e., system ξ{b,c},α is applicable). In order not to violate the
Validity condition in ξ{b,c},α, b is then forced to register for c the value α(c) = v.

• But in order not to violate the Agreement condition in system ξ{a,b},γ, processors a
and b must both register the same value for processor c. However, this is not the
case since a registered v′ while b registered v.

Note that this proof fails if n > 3m. This is because any 3-subset partition (A, B, C) of
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P would have at least one subset e.g., A with |A| > m. This would cause system
ξ(B∪C),α to be not allowable (i.e., /∈ Z(G,n,m)).

Solving the classical BGP for n > 3m : We now show that the necessary
condition n > 3m is also sufficient. We do so by describing an algorithm FBG that
achieves consensus in the (BG) formulation.

For a given allowable system ξN ,σ in Z(G,n,m), and processor pk ∈ P acting as general,

we make explicit the dependence of FBG on m, pk and P and write F
(m, pk, P)
BG . We

define the map F
(m, pk, P)
BG to be:

F
(m, pk, P)
BG : Z(G,n,m) × P × {pk} −→ V

(ξN ,σ , pi, pk) −→ F
(m, pk, P)
BG (ξN ,σ , pi, pk)

where the output corresponds to the value that processor pi computes for processor pk.
We say that F

(m, pk, P)
BG solves the (BG) formulation if ∀ ξN ,σ ∈ Z(G,n,m) we have:

1. Agreement: ∀ pi, pj ∈ N , F (m, pk, P)
BG (ξN ,σ , pi, pk) = F

(m, pk, P)
BG (ξN ,σ , pj, pk).

Intuitively, non-faulty lieutenants must compute the same value for general pk.

2. Validity: If pk ∈ N , then ∀ pi ∈ N , F (m, pk, P)
BG (ξN ,σ , pi, pk) = σ(pk).

Intuitively, this requires that the value that a non-faulty lieutenant pi computes
for a non-faulty general pk be pk’s private value.

To devise such a map, we introduce a recursive algorithm A(r, qk, S) over ξN ,σ that
takes three inputs comprising a subset S ≡ {q1, .., qs} ⊆ P ≡ {p1, .., pn}, a processor
qk ∈ S and an iteration variable r such that 0 ≤ r ≤ s− 1 :

• Base case A(0, qk, S) : When r is 0, processor qk sends its value to every other
processor qi ∈ S who receives value σ(qi qk) and attributes it to qk.

• Algorithm A(r, qk, S) for r > 0 :

i) Processor qk sends its value to every other qi ∈ S.

ii) Processor qi receives value vik ≡ σ(qi qk). A new instance of algorithm A is
then executed for each qi with an iteration counter set to r − 1 and a
processor set S − {qk}. Each such iteration sends vik to the remaining
processors qj, j ∈ {1, .., s}, j /∈ {k, i}. This step runs an instance of
A(r − 1, qi, S − {qk}) for each qi ∈ S − {qk} totaling (s− 1) instances.

iii) ∀ i, j ∈ {1, .., s}, i, j /∈ {k}, i 6= j, let vij ≡ σ(qi qj qk) denote the value that
qi computed for qj under algorithm A(r − 1, qj, S − {qk}) in step ii.
Subsequently, qi computes the following value and assigns it to qk :

wik ≡ majority (vi1, .., vij, .., vin), ∀j ∈ {1, .., n}, j 6= i
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We can represent the above logic in pseudo-code as follows:

Define A(r, qk,S) :
{

If r is equal to 0 :
{

For each qi ∈ S, i 6= k, do the following:
{

qi receives σ(qi qk)

qi assigns the value wik ≡ σ(qi qk) to qk
}

}

Else, if r > 0 :
{

For each qi ∈ S, i 6= k, do the following:
{

qi receives vik ≡ σ(qi qk) and sets it as its private value

Run algorithm A(r − 1, qi, S − {qk}) and store the resulting
(s− 2) vector [v1i, .., vji, .., vsi], where vji denotes the value
that qj computed for qi, and where j ∈ {1, .., s}, j /∈ {i, k}

}

For each qi ∈ S, i 6= k, do the following:
{

qi assigns wik ≡ majority (vi1, .., vik, .., vij, .., vis) to qk.
where the index j ∈ {1, .., s}, j 6= i

}
}

Return the (s− 1) vector [w1k, .., wjk, .., wsk], where j ∈ {1, .., s}, j 6= k
}

A(r, qk, S) invokes (s− 1) algorithms of order (r − 1) namely, A(r − 1, qi, S − {qk}),
i ∈ {1, .., s}, i 6= k. Similarly, each algorithm of order (r− 1) invokes (s− 2) others of
order (r − 2). The lowest order ones have r = 0 and are called (s− 1) ... (s− r) times.
Finally, each algorithm of order 0 sends (s− r − 1) messages, resulting in a total of
(s− 1) ... (s− r)(s− r − 1) messages and a complexity of O(s(r+1)).

∀i ∈ {1, .., n}, i 6= k, we now define the map F
(m,pk,P)
BG as follows:

F
(m,pk,P)
BG (ξN ,σ , pi, pk) ≡ wik

where wik is the appropriate component of the (n− 1) vector returned by A(m, pk, P)
with an iteration count set to m (the maximal number of faulty processors allowed).
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We claim that this map solves the (BG) formulation of the classical BGP whenever
m > 3n. Before we prove its correctness, we look at two clarifying examples (we will
drop the P superscript for ease of notation):

Example 1, (m,n) = (1, 4) : Let N = {p1, p2, p3} and p4 be faulty. There are two cases
depending on whether the general is faulty or not. We will refer to processors by their
indices and enclose received values in brackets and computed values in parentheses:

We describe the case of a faulty general (the other one can be analyzed similarly):

• Algorithm F
(1,4)
BG is invoked and p4 sends its value to every lieutenant i ∈ {1, 2, 3}.

• Lieutenant i receives value vi4 ≡ σ(i 4). Let v14 = a, v24 = b, and v34 = c.
Subsequently, each i ∈ {1, 2, 3} acts as general and runs a new instance of

algorithm F
(0, i)
BG to send vi4 to the remaining two lieutenants.

More specifically, under F
(0, 1)
BG , p1 sends v21 = σ(2 1 4) = a to lieutenant 2 and

v31 = σ(3 1 4) = a to lieutenant 3. Under F
(0, 2)
BG p2 sends v12 = σ(1 2 4) = b to

lieutenant 1 and v32 = σ(3 2 4) = b to lieutenant 3. Finally, under F
(0, 3)
BG p3 sends

v13 = σ(1 3 4) = c to lieutenants 1 and v23 = σ(2 3 4) = c to lieutenant 2.

Since the algorithm is running instances with m = 0, it must be that lieutenants 2
and 3 compute a value equals to a under F

(0, 1)
BG . Similarly, lieutenants 1 and 3

compute b under F
(0, 2)
BG , while lieutenants 1 and 2 compute c under F

(0, 3)
BG .

• Finally, the value that lieutenant 1 computes for p4 under F
(1, 4)
BG is equal to:
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majority (v14, v12, v13) = majority (a, b, c)

Lieutenants 2 and 3 will also compute the same value for p4 under F
(1, 4)
BG .

Example 2, (m,n) = (2, 7) : Let N = {1, 2, 3, 4, 5} and {6, 7} be faulty. Here too, there
are two cases depending on whether the general is faulty or not. We treat the case of a
faulty general p6 (the other case can be analyzed similarly) and follow the convention of
enclosing received values in brackets and computed values in parentheses:

• Algorithm F
(2,6)
BG is invoked and processor 6 sends its value to every lieutenant

i ∈ {1, 2, 3, 4, 5, 7}.

• Lieutenant i receives value vi6 = σ(i 6). Let v16 = σ(1 6) = a, v26 = σ(2 6) =
b, v36 = σ(3 6) = c, v46 = σ(4 6) = d, v56 = σ(5 6) = e, and v76 = σ(7 6) = f.

Subsequently, each i ∈ {1, 2, 3, 4, 5, 7} acts as general and runs F
(1, i)
BG to send vi6 to

the other five lieutenants. The next step is to compute the action of each F
(1, i)
BG .

We illustrate it for F
(1, 3)
BG where processor 3 acts as general and sends its value

v36 = σ(3 6) = c to the remaining five lieutenants {1, 2, 4, 5, 7}. In this case,
lieutenant j receives value vj3 = σ(j 3 6) = c, ∀j ∈ {1, 2, 4, 5, 7}. Subsequently,

each j ∈ {1, 2, 4, 5, 7} acts as general and runs a new instance of algorithm F
(0, j)
BG

to send vj3 to the remaining four lieutenants:

o Under F
(0, 1)
BG , processor 1 acts as general and sends its value σ(1 3 6) = c to

lieutenants {2, 4, 5, 7}. Lieutenant k receives σ(k 1 3 6) = c, ∀k ∈ {2, 4, 5, 7}.

o Under F
(0, 2)
BG , processor 2 acts as general and sends its value σ(2 3 6) = c to
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lieutenants {1, 4, 5, 7}. Lieutenant k receives σ(k 2 3 6) = c, ∀k ∈ {1, 4, 5, 7}.

o Under F
(0, 4)
BG , processor 4 acts as general and sends its value σ(4 3 6) = c to

lieutenants {1, 2, 5, 7}. Lieutenant k receives σ(k 4 3 6) = c, ∀k ∈ {1, 2, 5, 7}.

o Under F
(0, 5)
BG , processor 5 acts as general and sends its value σ(5 3 6) = c to

lieutenants {1, 2, 4, 7}. Lieutenant k receives σ(k 5 3 6) = c, ∀k ∈ {1, 2, 4, 7}.

o Under F
(0, 7)
BG , faulty processor p7 acts as general and sends some unknown

value(s) to lieutenants {1, 2, 4, 5}. Each lieutenant k ∈ {1, 2, 4, 5} receives an
unknown value σ(k 7 3 6) that we denote by a question mark (?).

Since m = 0, each received values also serves as the computed value that the
relevant processor attributes to p6. We can now compute the value that the
non-faulty lieutenants 1, 2, 4 and 5 compute for p6 under F

(1, 3)
BG :

o Lieutenant 1 computes:

majority (σ(1 3 6), σ(1 2 3 6), σ(1 4 3 6), σ(1 5 3 6), σ(1 7 3 6)) =

majority (c, c, c, c, ?) = c

o Lieutenant 2 computes:

majority (σ(2 3 6), σ(2 1 3 6), σ(2 4 3 6), σ(2 5 3 6), σ(2 7 3 6)) =

majority (c, c, c, c, ?) = c

o Lieutenant 4 computes:

majority (σ(4 3 6), σ(4 1 3 6), σ(4 2 3 6), σ(4 5 3 6), σ(4 7 3 6)) =

majority (c, c, c, c, ?) = c

o Lieutenant 5 computes:

majority (σ(5 3 6), σ(5 1 3 6), σ(5 2 3 6), σ(5 4 3 6), σ(5 7 3 6)) =

majority (c, c, c, c, ?) = c

Similarly, one can evaluate F
(1, i)
BG , i ∈ {1, 2, 4, 5, 7} :

o For F
(1, 1)
BG , we find that the values that the non-faulty lieutenants 2, 3, 4 and

5 compute for p6 are all equal to majority (a, a, a, a, ?) = a.

o For F
(1, 2)
BG , we find that the values that the non-faulty lieutenants 1, 3, 4 and

5 compute for p6 are all equal to majority (b, b, b, b, ?) = b.

o For F
(1, 4)
BG , we find that the values that the non-faulty lieutenants 1, 2, 3 and

5 compute for p6 are all equal to majority (d, d, d, d, ?) = d.
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o For F
(1, 5)
BG , we find that the values that the non-faulty lieutenants 1, 2, 3 and

4 compute for p6 are all equal to majority (e, e, e, e, ?) = e.

o For F
(1, 7)
BG , we find that the values that the non-faulty lieutenants 1, 2, 3, 4

and 5 compute for p6 are all equal to majority (f1, f2, f3, f4, f5)

where fs, s ∈ {1, 2, 3, 4, 5} denotes the value σ(s 7 6) that p7 communicates

to processor s under F
(1, 7)
BG . These values may be different from each other

since p7 is faulty.

• Finally, the value that the non-faulty lieutenants i, i ∈ {1, 2, 3, 4, 5} compute for

p6 under F
(2,6)
BG are as follows:

o Lieutenant 1 computes majority (a, b, c, d, e, majority (f1, f2, f3, f4, f5) )

o Lieutenant 2 computes majority (a, b, c, d, e, majority (f1, f2, f3, f4, f5) )

o Lieutenant 3 computes majority (a, b, c, d, e, majority (f1, f2, f3, f4, f5) )

o Lieutenant 4 computes: majority (a, b, c, d, e, majority (f1, f2, f3, f4, f5) )

Therefore, all non-faulty lieutenants compute the same value as required by the
Agreement criterion.

Proof of the algorithm’s correctness: We wrap up this section with a correctness
proof for the aforementioned algorithm whenever n > 3m.

Let P ≡ {p1, p2, .., pn} be a set of n processors, with pk acting as general for some
k ∈ {1, .., n}. Furthermore, assume that at most m out of n processors can be faulty,
with n > 3m. We claim that the (n− 1) vector returned by A(m, pk, P) satisfies the
Agreement and Validity conditions of the (BG) formulation.

We will prove this by induction on m and P . Note that m serves as the iteration count
in A as well as the maximal number of faulty processors in P .

• Base case: Given any subset S ⊆ P such that |S| = n−m and such that all
processors in S are non-faulty (this is possible since there are at most m faulty
processors), algorithm A(0, pi, S) satisfies the Validity and Agreement conditions
∀pi ∈ {S}. This should be rather clear since when A(0, pi, S) is executed, each
pj ∈ S (j 6= i) receives and registers the value σ(pj pi) = σ(pi). As a result, all
lieutenants agree on pi’s private value, causing the Validity and Agreement
conditions to be upheld.

• Induction step: Suppose that m ≥ 1, and that ∀i, k ∈ {1, .., n} (i 6= k),
A(m− 1, pi, P − {pk}) satisfies the Agreement and Validity conditions whenever
|P| − 1 > 3(m− 1). Now assume that |P| > 3m. Our objective is to prove that
A(m, pk, P) also satisfies both conditions. Without loss of generality, we assume
that the first n−m processors {p1, .., pn−m} are non-faulty and consider the two
cases corresponding to a faulty or non-faulty general pk.
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The case of a faulty general pk: When A(m, pk, P) is executed, general pk
sends a value σ(pi pk) to each lieutenant pi. These values may be arbitrary and
different than pk’s private value given the general’s faulty nature.

The next step is for the algorithm to execute A(m− 1, pi, P − {pk}) for each
lieutenant pi. First note that since |P| > 3m, we have |P| − 1 > 3(m− 1). We can
then use the induction hypothesis and assume that ∀i ∈ {1, .., n} (i 6= k),
A(m− 1, pi, P − {pk}) satisfies the Agreement and Validity conditions.

o If pi is non-faulty (i.e., 1 ≤ i ≤ n−m), its resulting (n− 2) vector will be of
the form [σ(pi pk), .., σ(pi pk), ...] where the first n−m− 1 entries are all
equal to σ(pi pk), by virtue of A(m− 1, pi, P − {pk})’s Validity condition.

o If pi is faulty, its resulting (n− 2) vector must have the first n−m entries all
equal. Indeed, these are the values computed by the non-faulty lieutenants
on behalf of the faulty processor pi and must all be equal by virtue of
A(m− 1, pi, P − {pk})’s Agreement condition.

The subsequent majority function applied at the level of each non-faulty processor
will then have the same set of inputs and as a result, compute the same output.
This guarantees that A(m, pk, P) satisfies the Agreement condition. The
Validity condition is futile in this case since the general is known to be faulty.

The case of a non-faulty general pk: When A(m, pk, P) is executed, general
pk sends a value σ(pi pk) = σ(pk) to each lieutenant pi. They are all equal to pk’s
private value.

A(m− 1, pi, P − {pk}) is subsequently executed for each lieutenant pi. Since
|P| > 3m, we have |P| − 1 > 3(m− 1). As a result, we can invoke the induction
hypothesis and assume that ∀i ∈ {1, .., n} (i 6= k), A(m− 1, pi, P − {pk})
satisfies the Agreement and Validity conditions.

o If pi is non-faulty (i.e., 1 ≤ i ≤ n−m), its resulting (n− 2) vector will be of
the form [σ(pk), .., σ(pk), ...] where the first n−m− 2 entries are all equal
to σ(pk), by virtue of A(m− 1, pi, P − {pk})’s Validity condition.

o If pi is faulty, its resulting (n− 2) vector must have the first n−m− 1
entries all equal. Indeed, these are the values computed by the non-faulty
lieutenants on behalf of the faulty processor pi and must all be equal by
virtue of A(m− 1, pi, P − {pk})’s Agreement condition.

Since m ≥ 1, and n > 3m, it must be that n− 1 > 2m. The majority of the n− 1
lieutenants are thus non-faulty. The last step in the execution of A(m, pk, P) will
then guarantee that all non-faulty lieutenants compute the same value σ(pk) for
pk, ensuring as such that the Validity and Agreement conditions are observed.

Before we conclude this section, we note that the authors of [5], [6] also consider a
variant of the classical BGP problem built using authenticated instead of oral messages.
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They prove that for such a model, consensus could be achieved for any number m of
faulty processors. This result highlights the importance of clearly specifying the system
model attributes prior to defining and solving the relevant consensus problem.

4 The FLP impossibility result

We now consider a different class of consensus problems for which no algorithm can
always reach consensus in finite time. This was first stated and proved in [4] and came
to be known as the FLP impossibility result. We start by defining the relevant
consensus problem before we state and prove this seminal result.

System model: For this class of consensus problems, we consider systems with
arbitrary network topologies consisting of a pre-defined set of static nodes or
processors P = {p1, .., pn} for some integer n > 1. The underlying communication
channel is assumed to be reliable and any faulty behavior is modeled at the level of
the processor as we describe later under the node failure regime. No constraints are
imposed on the nature of the messages which could be oral or signed. Most importantly,
the class of systems considered are fully asynchronous.

In what follows, we introduce numerous definitions used to help formalize the system
model:

• Processors communicate by sending each-other messages. A message is defined
to be a pair (pi,m) where pi ∈ P is the destination processor and m a message
value destined to pi taken from a fixed message set M.

• A message systemM is a buffer of messages that have been sent but not yet
received by their destined processor. Adding a message to M is achieved by
executing a send function:

send : P ×M → M
(p,m) → send (p,m) which places (p,m) in M

while removing a message from M requires the execution of a receive function:

receive : P → M ∪ ∅
p → receive(p) which does one of two things:

1. Returns ∅ i.e., leaves M unchanged, or

2. Returns a message value m taken from the subset of all messages in M
intended to p and deletes (p,m) from M. We say that message (p,m) has
been delivered.

The receive function is subject to the condition that if receive(p) is performed
infinitely may times, every message (p,m) ∈M intended to p gets eventually
delivered.
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• The notion of asynchronicity is embedded within the definition of the receive
function. Indeed, the function acts in a non-deterministic way by having the
right to return ∅ a finite number of times in response to receive(p) even though an
intended message (p,m) exists in M. Note that if this right were granted an
infinite number of times, the aforementioned condition would fail to hold.

• Each processor p ∈ P is characterized by a set of attributes consisiting of:

o An input register xp whose value is a single bit.

o An internal storage unit of infinite capacity that we denote sP .

o A program counter that we refer to as cp.

o An output register yp that can take values from {b, 0, 1} where b denotes a
value other than 0 or 1.

At any point t in time, we can concisely represent the state of processor p by the
four-tuple (xp(t), sp(t), cp(t), yp(t)). We refer to it as the internal state of p at
time t. At t = 0, each processor starts at an initial state characterized by an
empty input register and output register set to b :

inititial statep ≡ internal statep(0) ≡ (−, sp(0), cp(0), b)

• By exchanging messages, processors change their internal states. A primitive
step by processor p consists of two phases:

1. Call method receive(p) and obtain a value m ∈M ∪ {∅}.
2. Depending on p’s internal state and on m, p enters a new internal state and

sends a finite number of messages to other processors (i.e., places them in M
by executing the send function).

The change of p’s internal state is dictated by a deterministic transition
function fp. The only constraint on fp is that it cannot change the value of p’s
output register once p reaches a decision (i.e., when yp ∈ {0, 1}). In other words,
the output register is write once. More formally, we can let Sp denote the state
space of p, i.e., the space of all four-tuples (xp, sp, cp, yp). We let t ∈ {0, 1, ...}
denote a discrete unit of time corresponding to when primitive step #(t+ 1) was
applied. The transition function can be generically defined as:

fp : Sp × (M ∪ ∅) → Sp
[(xp(t), sp(t), cp(t), yp(t)), m] → (xp(t+ 1), sp(t+ 1), cp(t+ 1), yp(t+ 1))

such that yp(t) ∈ {0, 1} ⇒ yp(t+ 1) = yp(t)

• At any given time t, the system will be in a certain configuration C(t) which
corresponds to the internal states of all processors in P along with the content of
the message buffer M at time t :

C(t) ≡ [(x1(t), s1(t), c1(t), y1(t)), .., (xn(t), sn(t), cn(t), yn(t)), M(t)]

25



2020 Bassam El Khoury Seguias c©

At t = 0, the initial configuration of the system corresponds to the initial states
(−, si(0), ci(0), b) and initial input register values xi(0) of each processor pi ∈ P ,
as well as an empty message buffer M(0) = ∅ :

C(0) ≡ [(x1(0), s0(t), c0(t), b), .., (xn(0), sn(0), cn(0), b), ∅]

Moving from configuration C(t) to C(t+ 1) occurs after the execution of primitive
step #(t+ 1) which is fully determined by a pair (p,m) ∈M. We refer to the
receipt of m by p following primitive step #(t+ 1) as the event et+1. Recall that
m could be ∅ as per the definition of the receive function. We say that one moves
from C(t) to C(t+ 1) by applying event et+1 and write:

et+1 (C(t)) = C(t+ 1)

Note that the event (p, ∅) can always be applied to any configuration and so it is
always possible for a processor to take another step.

• We say that a configuration C(t) has decision value v ∈ {0, 1} if some processor
pi ∈ P is in a decision state with yi(t) = v. This definition does not impose any
restriction on the number of decision values that a configuration may have.
Indeed, it is conceivable for different processors in a configuration to have reached
different decision values. We will however impose a restriction when we later
define the Agreement criterion of the consensus problem.

• A schedule starting at configuration C(t) is a finite or infinite sequence σ of
events that can be sequentially applied to C(t). The associated sequence of steps
that generates these specific events is called a run. A finite schedule
σ ≡ ((et+l), (et+l−1), .., (et+1)) of length l ≥ 1 starting at C(t) results in another
configuration C(t+ l) such that:

C(t+ l) ≡ σ(C(t)) = et+l (et+l−1 (.. (et+1 (C(t)) ..) ) )

In this finite-length case, we say that σ(C(t)) is reachable from C(t). A
configuration that is reachable from some initial configuration is said to be
accessible.

Failure regime: The nodes are assumed to operate under a crash failure regime
where a given processor can either be operational or dead. More specifically, we say that
a processor p ∈ P is non-faulty in a given run if it can take infinitely many steps. This is
a weaker version than the byzantine regime we considered in section 3. The justification
for this choice lies in the fact that impossibility results that hold in a relatively basic
failure regime would also hold in a stronger one including the byzantine model.

Consensus problem: We are now in a position to specify what is meant for an
algorithm to reach consensus for this class of system models. To do so, we describe the
Agreement, Validity and Termination criteria that an algorithm must observe if it
were to solve the consensus problem:
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• Agreement: No accessible configuration can have more than one decision value.

• Validity: ∀v ∈ {0, 1}, some accessible configuration has decision value v. In other
words, this criterion ensures that there are no trivial solutions to the consensus
problem.

• Termination: Before stating the Termination criterion, we define what is meant
by an admissible and deciding run:

o A run is admissible if at most one processor is faulty and if all messages
destined to non-faulty processors are eventually received.

o A run is deciding if some processor reaches a decision state in that run.

The Termination criterion requires every admissible run to be a deciding run.
Note that this criterion only requires that some processor makes a decision rather
than all processors deciding. Here too, an impossibility result that holds in this
weaker context will certainly hold in the stronger setting that requires all
processors to decide. An important observation is that the Termination criterion
must hold deterministically i.e., every time the consensus algorithm is executed.

In [4], the authors refer to a consensus prototcol or algorithm that satisfies the
Agreement and Validity conditions as partially correct. If it also satsfies the
Termination criterion, then it is said to be totally correct in spite of one fault. The
FLP impossibility result can then be stated as follows:

No consensus protocol is totally correct in spite of one fault

In order to prove this, the authors demonstrate that every partially correct protocol has
some admissible run that is not a deciding run. In other words, if the Agreement and
Validity conditions were respected then the Termination criterion would fail. We now
turn to the reductio ad absurdum proof articulated in [4].

Proof of the FLP impossibility result: The gist of the proof consists in showing
that if all three criteria are uphelp, then one could still find an admissible run that
avoids taking any decision at all times, violating as such the Termination criterion. To
do so, we proceed in two steps:

1. We first show that there exists at least one initial configuration that admits at
least two schedules leading to two different decision values. Such a characteristic
is referred to as bivalency.

2. We then show that given any bivalent configuration, there exists a schedule that
leads to another bivalent configuration.

Intuitively, a bivalent configuration is one whose decision is not known a priori. Creating
an inifnite chain of such configurations will clearly violate the Termination criterion.

Lemma A: In a totally correct consensus protocol in spite of one fault, there exists a
bivalent initial configuration.
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Let C(t) be a configuration at some time t and let VC(t) be the set of decision values of
all configurations reachable from C(t). Clearly. VC(t) must be a subset of {0, 1} i.e.,
VC(t) ∈ {∅, {0}, {1}, {0, 1}}.

• If VC(t) = {0, 1}, we say that C(t) is bivalent.

• If VC(t) = {0} ({1}) we say that C(t) is 0-valent (1-valent).

We first claim that VC(t) 6= ∅. To see why, note the following:

• There always exists an admissible run starting at C(t). This is because by
assumption, we consider systems where at most one processor is faulty and such
that for all non-faulty processors p, the condition we imposed on the receive
function ensures that all messages destined to p get eventually delivered.

• Since the system is assumed to be totally correct, every admissible run must also
be a deciding run. As a result, the set VC(t) of decision values of all configurations
reachable from C(t) cannot be the empty set.

We now now proceed with a reductio ad absurdum proof of Lemma A.

• Suppose that Lemma A does not hold, i.e., in a totally correct consensus prototcol
in spite of one fault, there does not exist any bivalent initial configuration.

• We already established that for any configuration C(t), VC(t) 6= ∅. In particular,
VC(0) 6= ∅. If furthermore no bivalent initial configuartion exists, then any initial
configuration C(0) must either be 0-valent or 1-valent.

• This result, coupled with the Validity criterion shows that there exists distinct
initial configurations C(0) and C ′(0) such that C(0) is 0-valent and C ′(0) 1-valent
(i.e., VC(0) = {0} and VC′(0) = {1}).

• Next, note that any two initial configurations differ only in the initial value of a
subset of their processors. In other words:

C(0) ≡ ((x1(0), s1(0), c1(0), b) , (x2(0), s2(0), c2(0), b) , .., (xn(0), sn(0), cn(0), b), ∅)

C ′(0) ≡ ((x′1(0), s1(0), c1(0), b) , (x′2(0), s2(0), c2(0), b) , .., (x′n(0), sn(0), cn(0), b), ∅)

where ∃ i ∈ {1, .., n} such that xi(0) 6= x′i(0).

• Now observe that one can transform any initial C(0) into another initial C ′(0)
through a sequence of adjacent configurations where each configuration in the
sequence differs from its neighbor(s) in the initial value of a single processor. For
example, starting at C(0), one can apply the following steps to get to C ′(0):

Step 1: Replace x1(0) with x′1(0) and leave all other initial values intact:

C1(0) ≡ ((x′1(0), s1(0), c1(0), b) , (x2(0), s2(0), c2(0), b) , .., (xn(0), sn(0), cn(0), b), ∅)

Step 2: Replace x2(0) with x′2(0) and leave all other initial values intact:
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C2(0) ≡ ((x′1(0), s1(0), c1(0), b) , (x′2(0), s2(0), c2(0), b) , .., (xn(0), sn(0), cn(0), b), ∅)

...

Step n: Replace xn(0) with x′n(0), leave the rest intact and get C ′(0) ≡

Cn(0) ≡ ((x′1(0), s1(0), c1(0), b) , (x′2(0), s2(0), c2(0), b) , .., (x′n(0), sn(0), cn(0), b), ∅)

• Since any initial configuration must either be 0-valent or 1-valent, and since C(0)
and C ′(0) have different valencies, it must be that in the sequence of adjacent
configurations leading from C(0) to C ′(0) there exists a 0-valent initial
configuration Ci(0) adjacent to a 1-valent initial configuration Ci+1(0)
(i ∈ {0, .., n− 1}) where the two differ only in the initial value of pi+1.

• Consider an admissible run starting at initial configuration Ci(0) and such that:

o Processor pi is the only faulty processor.

o pi is assumed to have crashed prior to starting the run.

By the total correctness assumption, this admissible run must also be a deciding
one. Let σ be its corresponding schedule.

• Since Ci(0) and Ci+1(0) differ only in pi’s initial value, and since this value is
irrelevant to σ in the context of this run ( pi is assumed to be a dead processor
that takes no steps in the run), one can apply the same schedule on the initial
configuration Ci+1(0). Furthermore, the deterministic transition functions will
ensure that the two runs on Ci(0) and Ci+1(0) result in the same decision.

• If the decision is 0, then this would contradict Ci+1(0)’s 1-valency. Otherwise
Ci(0)’s 0-valency would be contradicted. Q.E.D.

Next, we show that given a totally correct consensus protocol in spite of one fault, we
can always derive a bivalent configuration from another bivalent one by applying an
adequate sequence of events.

Lemma B: Let C(t) be a bivalent configuration at time t. Let e ≡ (p,m) be an event
applicable to C(t). Let C be the set of all configurations reachable from C(t) without
applying e, and D the set e(C) ≡ {e(E) | E ∈ C and e is applicable to E}. In a totally
correct consensus protocol in spite of one fault, we claim that D must contain at least
one bivalent configuration.

In order to prove it, we lean on a number of sub-lemmas. In the proofs below we drop
the explicit dependence of a configuration on a particular time instance since knowledge
of the exact time or step when a configuration materializes is not necessary for our
purposes:

• Sub-lemma B.1: The event e is applicable to every configuration E ∈ C.
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o The event e is clearly applicable to configuration C(t) (by the assumption in
Lemma B).

o Furthermore, messages could be delayed arbitrarily (due to the asynchronous
nature of the system model).

o As a result, one could arbitrarily delay the receipt of message value m by
processor p. Q.E.D.

• Sub-lemma B.2: If the set D does not contain any bivalent configuration, then it
must contain both a 0-valent and a 1-valent configuration.

o Since C(t) is a bivalent configuration (by the assumption in Lemma B),
there exists a 0-valent and 1-valent configurations E0 and E1 reachable from
C(t). We now show how to derive a 0-valent configuration from E0 that is an
element of D. We can replicate the same logic to derive a 1-valent
configuration from E1.

o Two cases arise depending on whether E0 is an element of C or not.

1. If E0 ∈ C, let F0 be the configuration e(E0). This is possible by
Sub-lemma B.1. Clearly, F0 ∈ D by the definition of the set D.

2. If E0 /∈ C, then the event e was applied sometime before reaching
configuration E0. Let F0 ∈ D be the configuration immediately obtained
after applying e. In this case, E0 is reachable from F0.

o If D has no bivalent configuration, then F0 must be univalent (we’ve shown
as part of Lemma A that it cannot be ∅):

1. In the first case above, F0 is reachable from E0. Since E0 is 0-valent,
then so must be F0.

2. In the second case, E0 is reachable from F0. If F0 were 1-valent, then E0

would also have to be 1-valent. Since E0 is 0-valent, then F0 is 0-valent.
Q.E.D.

• Sub-lemma B.3: Two configurations are said to be neighbors if one can be
reached from the other through the application of a single event. If D has no
bivalent configurations, then there must exist two neighboring configurations
C0 ∈ C and C1 ∈ C such that configuration D0 ≡ e(C0) ∈ D is 0-valent and
configuration D1 ≡ e(C1) ∈ D is 1-valent.

o By Sub-lemma B.2 we know that D must contain both a 0-valent
configuration F0 and a 1-valent configuration F1. Let E0 and E1 be the two
configurations in C such that F0 = e(E0) and F1 = e(E1)

o Since all the elements of C are reachable from C(t), it must be that E0 and
E1 are reachable from C(t). Let G ∈ C be the last common configuration in
the two distinct paths from C(t) to E0 and E1 as depicted below:
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o Suppose that for any two neighboring configurations C0 and C1 ∈ C, e(C0)
and e(C1) cannot have different valences. We’ve seen as part of Lemma A
that e(C0) and e(C1) cannot have an empty set of decision values either.
Furthermore, being elements of D, they cannot be bivalent by the condition
in Sub-lemma B.3. As a result, e(C0) and e(C1) must have the same
valence.

o In particular, since configurations E0 and G are linked by a sequence of
neighbors, it must be that e(E0) and e(G) share the same valence. Given
that e(E0) = F0 is 0-valent, it must be that e(G) is 0-valent. By a similar
argument, and using the sequence of neighbors linking E1 and G, we can also
conclude that e(G) is 1-valent. In other words, e(G) is bivalent.

o But G ∈ C and so e(G) ∈ D. A bivalent e(G) contradicts the initial
assumption that D has no bivalent configurations. Q.E.D.

• Sub-lemma B.4 (”Commutativity property of schedules”): Suppose that
from some configuration C(t), schedules σ1 and σ2 lead to configurations C1(t

′)
and C2(t

′′) respectively, for some t′, t′′ > t. If the two sets of processors taking
steps in σ1 and σ2 are disjoint, then the application of σ2 to C1(t

′) and σ1 to
C2(t

′′) will result in the same configuration C3(t
′′′), for some t′′′ > max(t′, t′′).

Without loss of generality, suppose that the system’s processor set consists of two
distinct processors {p1, p2}. We will prove the sub-lemma for the simple case
where the two schedules are disjoint singletons, i.e., σ1 = {e1 ≡ (p1,m1)} and
σ2 = {e2 ≡ (p2,m2)}. The general case can be analyzed using the same logic.

o Let σ1 be initially applied to C(t). The event e1 corresponds to the receipt of
message value m1 by p1. Recall that the receive function deletes (p1,m1)
from the message buffer M and then depending on p1’s internal state and on
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the message value m1, p1 enters a new internal state and sends a finite set of
messages to other processors.

o Let C(t) ≡ ((x1(t), s1(t), c1(t), y1(t)), (x2(t), s2(t), c2(t), y2(t)), M(t)).

o At t′, we can write:

C1(t
′) ≡ e1(C(t)) =

((x1(t
′), s1(t

′), c1(t
′), y1(t

′)), (x2(t
′), s2(t

′), c2(t
′), y2(t

′)), M(t′)) =

((x1(t
′), s1(t

′), c1(t
′), y1(t

′)), (x2(t), s2(t), c2(t), y2(t)), M(t)−{(p1,m1)} + A)

where A is a set of newly generated messages and processors pairs.

o At t′′′, we can write:

C3(t
′′′) ≡ e2(C1(t

′)) =

((x1(t
′′′), s1(t

′′′), c1(t
′′′), y1(t

′′′)), (x2(t
′′′), s2(t

′′′), c2(t
′′′), y2(t

′′′)), M(t′′′)) =

((x1(t
′), s1(t

′), c1(t
′), y1(t

′)), (x2(t
′′′), s2(t

′′′), c2(t
′′′), y2(t

′′′)), M(t′)−
{(p2,m2)} + B)

where B is a set of newly generated messages and processors pairs.

o One can easily see that applying σ2 to C(t) and then applying σ1 to the
resulting configuration C2(t

′′) would yield the same configuration C3(t
′′′).

We are now in a position to prove Lemma B. Suppose that D has no bivalent
configurations. By Sub-lemma B.3, there must exist two neighboring
configurations C0, C1 ∈ C such that D0 ≡ e(C0) is 0-valent and D1 ≡ e(C1) is
1-valent (e is the event (p,m)). By virtue of being neighbors, we can assume
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without loss of generality that C1 = e′(C0) for some event e′ ≡ (p′,m′). We have
two cases to consider:

1. Case p 6= p′: We have D1 = e(C1) = e(e′(C0)). Since p 6= p′, then the two
processors taking steps in σ ≡ {e} and σ′ ≡ {e′} are disjoint. We can thus
apply Sub-lemma B.4 to get D1 = e′(e(C0)) = e′(D0). This is not possible
since a 1-valent configuration cannot be reached from a 0-valent one.

2. Case p = p′: Consider an admissible run starting at C0 and such that:

o Processor p is the only faulty process.

o p is assumed to have crashed prior to starting the run.

By the total correctness assumption, this admissible run must also be a
deciding one. Let σ be its corresponding schedule and let A = σ(C0) be the
resulting configuration. Clearly, the set {e, e′} ≡ {(p,m), (p,m′)} does not
have any common processors with events included in σ. We can thus invoke
Sub-lemma B.4 as portrayed in the diagram below:

Since D0 is 0-valent, it must be that E0 ≡ σ(D0) is 0-valent too (we have
previously shown as part of Lemma A that its decision set cannot be ∅).
Similarly, since D1 is 1-valent, so must be E1. Now note that E0 and E1 are
both reachable from A and have different valencies. A must hence be
bivalent. But A is the outcome of a deciding run (by construction) and hence
cannot be bivalent.

In both cases we reached a contradiction, demonstrating that D must contain at
least one bivalent configuration.

In order to prove the FLP impossibility result, we now use Lemma A and Lemma B
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to build an admissible non-deciding run for any consensus protocol that is totally correct
in spite of one fault. We first build a particular class of admissible runs as follows:

• Maintain a queue of processors, originally in arbitrary order.

• For any given configuration, let its associated message buffer be ordered according
to the time the messages were sent, earliest first.

• Define a stage to be a collection of one or more steps. A stage is completed when
the first processor in the queue takes a step. In this step, the processor receives
the earliest message destined to it in the message buffer, or ∅ if no messages are
available. The processor is then moved to the back of the queue.

Note that this construction ensures that in any infinite sequence of such stages, every
non-faulty processor (i.e., one that can take infinitely many steps) will receive every
message sent to it. Such a run is hence admissible. We now derive a particular instance
of a non-deciding run that belongs to this class of admissible runs:

• Let C0 be a bivalent initial configuration. The existence of such a C0 is
guaranteed by Lemma A.

• Repeat the following procedure for each bivalent configuration Ci, i ≥ 0 :

o Let p be the processor heading the processors queue at the time
corresponding to configuration Ci and m the earliest message value destined
to p in the message buffer (if there is no such message, then m = ∅). Let e be
the event (p,m).

o Lemma B guarantees the existence of a bivalent configuration Ci+1

reachable from Ci through the application of a schedule where e is the last
event applied.

The previous procedure is actually an infinite loop characterizing an admissible run
with no decision ever reached. Q.E.D.

Before we wrap up this chapter, we stress one more time the importance of clearly
defining the system model attributes. For example, it suffices to substitute the
deterministic nature of the Termination criterion with its randomized counterpart for
the FLP result to stop holding as was proven in [1].

References

[1] Michael Ben-Or. Another advantage of free choice: Completely asynchronous
agreement protocols. ACM, 1983.

[2] Cynthia Dwork and Nancy Lynch. Consensus in the presence of partial synchrony.
Journal of the Association for Computing Machinery, 35(2):288–323, April 1988.

[3] Michael J. Fischer, Nancy Lynch, and Michael Merritt. Easy impossibility proofs for
distributed consensus problems. ACM, 1985.

34



2020 Bassam El Khoury Seguias c©

[4] Michael J. Fischer, Nancy Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the Association for
Computing Machinery, 32(2):374–382, April 1985.

[5] Leslie Lamport, Robert Shostak, and Marchall Pease. The byzantine generals
problem. ACM Transactions on programming Languages and Systems, 4(3):382–401,
July 1982.

[6] M. pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
Journal of the Association for Computing Machinery, 27(2):228–234, April 1980.

35


