
Bitcoin
Transactions (pre-segwit)

Bassam El Khoury Seguias

January 11, 2020

1 Introduction

Part of philosophy’s oddity lies in its unwavering fueling of the desire of each and every
one of its practitioners to put an end to it. The path to fulfillment ends in the revelation
of a version of the truth that reigns supreme over any version that preceded it and any
that would otherwise follow it.

Against this backdrop, many philosophers thoroughly investigated and debated the
nature of the universe. In doing so, different truths emerged on a spectrum bounded by
two extremes that were vehemently defended by some of humanity’s brightest. On one
end, a Parmenidean view of a static universe and its absolutely eternal reality. On the
other, a Heraclitean representation of a changing universe in an eternal state of flux.

It is not my intent nor is it within the extent of my capabilities to resolve this dichotomy.
However, there seems to be substantial empirical evidence that movement is inherently
linked to existence. Be it microscopic or macroscopic, a certain notion of change appears
to be intimately tied to the very fabric of reality. This flow is particularly noticeable at
the level of the various interactions that happen among individuals or groups.

A significant part of these exchanges is succinctly encapsulated in what we refer to as
a transaction. In its most general setting, a transaction refers to that which is ”driven
through”, ”accomplished” or ”settled”. It is derived from the pairing of the Latin words
trans and agere which respectively mean ”through” and ”driving forward”. Implicit to
this etymology is the notion of a movement, the subject of which could be a physical
good or an intangible (e.g., a service, a right, a piece of information) originating at one
or multiple sources and destined to one or multiple recipients.

A Bitcoin transaction is no exception as it fundamentally consists of transferring spend-
ing control from one entity to another. In this context, control refers to the authority
that a given entity benefits from in order to unlock a certain value. As such, a Bitcoin
transaction of Satoshi 1, 000, 000 from Alice to Bob is an activity that ensures that the
control over spending these Satoshis has moved from Alice to Bob who can now spend
them (or a portion of them) at will. A Satoshi is the smallest transactable unit of a bitcoin

1



2020 Bassam El Khoury Seguias c©

(the currency, also denoted BTC) and is equal to BTC 10−8. In light of this description,
one can define a Bitcoin transaction as a data structure that essentially includes:

• A set of unspent previous Bitcoin transaction outputs commonly known as UTXOs.
Each one of them contains a specific amount of Satoshis, the control over which
has been transferred from a previous entity to the one initiating the current Bitcoin
transaction. UTXOs become inputs to the current Bitcoin transaction.

• One or more recipients who will be given spending control over UTXOs.

• An amount specifying the value of Satoshis to be transferred to each recipient.

• Cryptographic signatures and relevant scripts used to verify the authenticity of the
sender(s) as well as to codify and observe any spending rule(s) imposed by them.

The fourth point above is of particular importance. It is commonly stated that a sig-
nature is applied to a given Bitcoin transaction. However, a Bitcoin transaction is not
necessarily characterized by a single signature and can have as many of those as the
number of UTXOs it consumes or more (if e.g., a UTXO requires a multisignature). The
reason for this is that each UTXO can require a proof of sender(s)’s authenticity as a
necessary condition for unlocking the amount it encapsulates. Two design dimensions
ensue from this observation:

1. A choice of a signature message: Each signature is applied to a message which
is built on a modified subset of the content of the Bitcoin transaction. Most impor-
tantly, the procedure for devising the message is not monolithic and exhibits instead
a certain flexibility in choosing what content to take into account. As a result, a
message can be a handful of things depending on which constituents of the Bitcoin
transaction are passed to Bitcoin’s signing algorithm. In order to describe which
procedure was followed, a sighash byte is specified and appended to the signature.

2. A codification of the spending conditions: Aside from requiring a proof of a
sender’s authenticity, a UTXO may also have other rules that constrain its spend-
ing. Conditions are generally encapsulated in a field known as a locking script or
scriptPubKey and expressed using Bitcoin’s Script programming language. On
the other hand, a recipient must provide relevant data in the form of an adequate
unlocking script also known as scriptSig, in order to claim control over a trans-
ferred amount.

The right of the recipient to claim said control in exchange of providing relevant
proof as mandated by the sender is enforced through a smart contract. In essence,
a smart contract is a computer program that verifies and executes the rules dictating
the interplay between different parties. It was originally introduced by the American
cryptographer, computer scientist and legal scholar Nick Szabo [16], [17]. In the
context of Bitcoin, a necessary condition for a transaction to be valid is for the
pairing of scriptSig and scriptPubKey to evaluate to True.

2



2020 Bassam El Khoury Seguias c©

By virtue of its digital nature, a Bitcoin transaction is internally represented in raw
form as a byte-stream. The different elements of the transaction data structure are
mapped to a sequence of bits through a well-defined serialization process. Conversely,
one could take a raw transaction and deserialize it into its corresponding human-
readable format. These two equivalent representations tend to be lengthy, making them
rather cumbersome to use whenever referencing a particular Bitcoin transaction. As a re-
sult, a more compact identifier known as the transaction identity or txid was introduced.
It consists of a 32 byte sequence obtained by adequately subjecting the raw representation
to specific hashing operations.

The objective of this chapter is to provide an introduction to the mechanics of a Bitcoin
transaction predating the Segregated Witness (SegWit) activation which will be
separately discussed in another chapter. The content is organized as follows:

• Section 2 introduces the building blocks of a generic Bitcoin transaction. It
also describes the serialization process that maps a Bitcoin transaction in human-
readable form into its corresponding raw representation and shows how to derive a
transaction’s txid from its serialized representation.

• Section 3 is a brief introduction to the Bitcoin Script used to codify spending
conditions imposed on certain UTXOs.

• Section 4 introduces various types of spending conditions that can be expressed in
Script and imposed on a UTXO as part of its scriptPubKey. Clearly, this cannot be
an exhaustive treatment and is limited to examples that are deemed more relevant
than others based on their practicality and usability as of the time of writing.

• Section 5 is dedicated to building relevant python methods to illustrate the serializa-
tion and deserialization processes for Bitcoin transactions that spend P2PKH
or P2SH outputs. In particular, we consider a special case of a P2SH output that
requires multiple signatures to be unlocked. The purpose is to provide a more
detailed view of the building blocks of some of the most common Bitcoin transac-
tions. The python methods could also assist those with no access to a Bitcoin client
to conveniently query the blockchain and interpret raw transactions.

• Section 6 describes two special types of Bitcoin transactions. The first is the Coin-
base transaction created whenever a new block is mined. Its uniqueness stems from
the fact that it does not have any inputs associated with it but generates neverthe-
less a well-defined amount of bitcoins that the miner can claim as a block reward.
The second type of transactions is one that inscribes data onto the blockchain by
using the special OP RETURN opcode.

• Section 7 introduces the different types of signature hashes (i.e., sighash) that
affect how a message is prepared for signature. Given the seemingly confusing
nature of this topic, we build relevant python methods from scratch in order to il-
lustrate the mechanics of constructing messages based on the sighash byte. We then
extract the signatures pertaining to these messages from the relevant raw represen-
tation and run them through the ECDSA verification algorithm to demonstrate
their validity.

3



2020 Bassam El Khoury Seguias c©

• Section 8 concludes with an introduction to transaction malleability, its effects,
and its prevalence in the legacy Bitcoin transaction structure. The aim is to moti-
vate the need for a mallebility-free construct of which SegWit is a working example.

We assume that the reader is familiar with Bitcoin’s keys and address system as
introduced in the chapter ”Bitcoin Private key, Public key, and Addresses”. We also
recommend that the reader be familiar with the basics of ECDSA signature as presented
in the chapter ”Bitcoin Elliptic Curve Digital Signature Algorithm (ECDSA)”.

2 Building blocks of a Bitcoin transaction

Common sense dictates that in order to conduct a generic transaction there needs to
be, at a minimum, one payer and one payee. In its simplest setting, the payee would
receive payment made by the payor in exchange of her goods or services. One could then
capture the essence of a generic transaction by specifying a few parameters including:

• The payer’s source(s) of funds indicating where payment would come from.

• An assurance that the payer is compliant with any spending condition attached
to the selected source(s) of funds. For instance, this could be a proof that these
sources are legitimately owned by the payer.

• The payee’s account details indicating the new destination of funds.

• A specification of the payment amount destined to the payee.

• Any spending encumbrance to be imposed on the payee.

A Bitcoin transaction is a data structure that encapsulates this information in a
handful of fields. They include a Version field, Inputs and Outputs fields
respectively referred to as vin and vout, and a LockTime field commonly referred to
as nLockTime. In what follows, we define each of these fields in more detail.

Version: It can be argued that progress and innovation (be it incremental or
groundbreaking) have been largely rooted in Man’s desire to improve on the status quo.
Underlying this line of argument is a recognition that achieving the summum bonnum
of anything requires a process of iteration. In particular, a Bitcoin transaction could
benefit from a margin of flexibility in redefining its constituents if and when the need
arises (e.g., introducing a new consensus rule as was done in BIP 68 [11]). One way that
a Bitcoin transaction introduces this flexibility is through its 4 byte long Version field.
Usually, a Bitcoin transaction has it set to the decimal value 1, but higher versions can
be used (e.g., version 2 in the case of BIP 68).

nLockTime: This field ensures that the Bitcoin transaction does not get mined until
a future time instance or until the blockchain reaches a certain future block height. It is
important to note that the 4 byte long nLockTime field is an unsigned integer that
denotes an absolute value specifying a block height or a time instance. To distinguish
between the two value types, a threshold of 500× 106 is used:

4



2020 Bassam El Khoury Seguias c©

• If nLockTime is set to a positive value that is less than 500× 106, it is interpreted
as the minimum block height required to be reached on the blockchain for this
Bitcoin transaction to be eligible for valid mining.

• If it is set to a value above 500× 106, it is interpreted as the earliest timestamp
(in Unix epoch time) before which the Bitcoin transaction will not be eligible for
valid mining.

• If nLockTime is equal to 0 (or less than or equal to the current block height or
Unix epoch time), the Bitcoin transaction is eligible for immediate mining.

The ”absolute” specifier is a misnomer. It indicates that a block height is measured with
respect to the decimal value 0, while a time argument is meant to refer to a Unix Epoch
time denoting the number of seconds that have passed since 00:00:00, 1 January 1970.
This is to be contrasted with relative time locks that we will introduce a bit later and
that enable the Bitcoin transaction initiator to choose a more dynamic reference point.

Importantly, if any party attempts to transmit a Bitcoin transaction whose nLockTime
field has not matured yet, it will automatically be rejected by the first node to receive it
and not relayed to peer nodes. For nLockTime to be enabled, a transaction must have
at least one of its nSequence fields (to be discussed in the following paragraph) set to
a value below 0xffffffff.

vin: A Bitcoin transaction must specify enough detail about the source of funds it
intends to use. It should come as no surprise that any source of funds referenced by a
Bitcoin transaction should have either been legitimately generated by the network or
transferred from one peer to another. As a result, we get two possible scenarios:

1. New Satoshis are created upon the successful mining of a new block that extends
the blockchain with the highest amount of work to date. The creation of new
Satoshis takes place as part of a specific type of Bitcoin transaction known as a
Coinbase transaction. We will revisit it in more detail in section 6.

2. Existing Satoshis were sent to the current sender as part of a previous valid
Bitcoin transaction. Any transaction’s output that was destined to the current
issuer and that has not been spent as of yet is known as an Unspent

5



2020 Bassam El Khoury Seguias c©

Transaction Output (UTXO). Each one of these UTXOs contains an amount
of Satoshis, the control over which has been transferred from a previous entity to
the one initiating the current Bitcoin transaction.

More specifically, a Bitcoin transaction must include the following input information:

• How many UTXOs (sources of funds) it will consume. This is specified in a
variable length input counter.

• Where each one of these UTXOs is located. This is specified in two subfields,
jointly referred to as the UTXO’s outpoint:

> The unique identifier of a previous Bitcoin transaction of which that
particular UTXO was an output. This 32 byte identifier is known as the
Bitcoin transaction’s txid and we will describe it in more detail later on.

> Since a Bitcoin transaction may contain many UTXOs, it is imperative to
specify the index of the particular UTXO being used in the current
transaction. A UTXO index is specified as part of a 4byte long sequence.

• For each UTXO, a proof that all spending conditions associated with it have been
met. Most of the time this consists of a signature proving that the sender is the
legitimate owner of this UTXO. But spending conditions could be more varied
as we will see in section 4. This information is encapsulated in a variable-length
field known as ScriptSig or unlocking script. Given its variable length, a
scriptSig is always preceded by an adequate stream of bytes indicating its length.

• An additional 4-byte sequence number field or nSequence. Satoshi’s original
implementation allowed for a degree of flexibility before including a Bitcoin
transaction in a block. Each transaction input has its own nSequence field, the
maximum value of which is 0xffffffff. It is believed that this field was originally
meant to enable procedures similar to the following:

* An entity sends a Bitcoin transaction with a pre-specified nLockTime value.
Furthermore, at least one of its nSequence fields is strictly less than 0xffffffff.

* The Bitcoin transaction is included in the mempool (i.e., a set of Bitcoin
transactions that were initiated but not yet mined as part of a block on the
blockchain) and not supposed to be mined until nLockTime is reached.

* Prior to reaching the nLockTime value, relevant parties can update the
Bitcoin transaction by increasing the appropriate nSequence number(s).

* Once all nSequence values become 0xffffffff, the Bitcoin transaction is
considered ready to be mined (even if nLockTime has not been reached yet).

For example, such a procedure could facilitate the following practical scenarios:

1. Two (or more) entities may need to engage in an on-going series of
interactions involving back and forth payments. Relevant parties can upload
an initial Bitcoin transaction to the mempool with nSequence equals to 0.
Every subsequent interaction would increase nSequence until all parties
decide to publish the final state on the blockchain.

6



2020 Bassam El Khoury Seguias c©

2. A transaction may involve multiple signers that don’t necessarily sign it
simultaneously. In this case, the Bitcoin transaction is added to the mempool
with nSequence values of all relevant inputs set to below 0xffffffff. Every time
a new signature is secured, the appropriate nSequence gets updated. When
all signers have signed and all nSequence fields set to 0xffffffff, the Bitcoin
transaction is considered final and ready for inclusion in a block.

This original implementation of nSequence erroneously assumed that miners would
always mine a version of a Bitcoin transaction with a higher nSequence, even if
that version reflected a miner’s fee (i.e., the fee claimed by a miner for including
the Bitcoin transaction in a valid block) that is less than one of its predecessors.
In reality, miners aim to maximize their profits and may choose an earlier version
that is more profitable. Furthermore, this implementation paved the way to a
potential Denial of Service (DoS) attack where an attacker would flood the
network with as large a number of replacement transactions as she pleases while
only incurring a small fee associated with the cost of the newest transaction.

To address these issues, BIP 125 (”Opt-in Full Replace-by-Fee Signaling”
(RBF)) [12] was enacted. The proposal countered the risk of a DoS attack by
embedding a structural disincentive affecting the fee of replacement transactions.
The replacement fee would now need to be higher than the cumulative fees of all
its predecessors. More specifically, every replacement transaction must pay a fee
greater than or equal to the sum of:

i. The sum of the fees of each of its predecessors and

ii. A fee accounting for the bandwidth to be consumed by the replacement
transaction and that must be set above the node’s minimum relay fee.

Aside from this remedy, nSequence was repurposed as part of BIP 68 [11] and
subjected to new consensus rules that allowed for additional functionality. In
particular, it became possible to use relative time locks as opposed to their
absolute counterparts. As part of BIP 68, nSequence was required to obey the
following rules:

– If its leftmost bit (as expressed in big endian notation) is set to 0, i.e.,
0x00000000 ≤ nSequence ≤ 0x7fffffff, then nSequence is used to enable
relative locktime (RLT). It also indicates that nLockTime is enabled and
RBF is signaled. This most significant bit is also known as the Disable
Flag.

The effect is similar to nLockTime in that a transaction gets locked until a
future date. However, this date is specified relative to a UTXO-specific time
or block height as opposed to a universal time or absolute block height:

∗ The UTXO-specific time corresponds to the mining date of the UTXO
appearing in the Bitcoin transaction input for that particular nSequence
field. The mining date is the Median-Time-Past (MTP) of the block
in which the UTXO was mined. We will define MTP shortly.

∗ The UTXO-specific block height corresponds to the height of the block

7



2020 Bassam El Khoury Seguias c©

in which it was originally mined.

In order to specify whether relative time is measured in actual time or block
height, a Type Flag is specified. This flag corresponds to the 23rd rightmost
bit of nSequence and is interpreted as follows:

∗ A Type Flag of 1 indicates a time-based lock-time. nSequence’s least
significant 16 bits turn into a minimum time constraint over the input’s
UTXO MTP. A value of n prohibits inclusion of the input in blocks prior
to the one mined 512 ∗ n seconds after the relevant UTXO’s mining date.

∗ A Type Flag of 0 indicates a block-based lock-time. The nSequence
value’s least significant 16 bits denote the minimum number of blocks
above the UTXO’s block height for it to be spent legitimately.

– If the Disable Flag is set to 1, the RLT is disabled. However, nSequence
could still be used to enable nLockTime or signal RBF. In particular:

∗ 0x8fffffff ≤ nSequence ≤ 0xfffffffd indicates that RLT is not enabled but
that RBF and nLockTime are both enabled.

∗ nSequence = 0xfffffffe indicates that RLT is not enabled, that RBF is
not signaled but that nLockTime is still enabled.

∗ nSequence = 0xffffffff indicates that RLT is not enabled, that RBF is not
signaled and that nLockTime is not enabled.

Note that a Bitcoin transaction will be considered invalid if any of its nSequence
fields did not age appropriately at the time it gets submitted.

We mentioned that relative time calculation uses MTP. Each block has a
timestamp that the miner sets. Given network latencies, consensus rules allow
miners a certain flexibility in setting it. With the advent of time locks, this opened
the possibility for miners to misrepresent the timestamp and take advantage of
time-locked transactions. BIP 113 [13] proposed a remedy by modifying the
notion of consensus time and introducing the Median Time Past. It is calculated

8



2020 Bassam El Khoury Seguias c©

by taking the median timestamp of the most recent eleven blocks. By doing so,
the possible abuse by any one miner in setting her block’s timestamp gets reduced.

vout: A Bitcoin transaction must provide information about the recipient(s) of its
funds. In particular, it must specify the following:

>> A variable length output counter indicating the total number of outputs.

>> For each output, the amount of Satoshis as specified in an 8 byte long field.

>> For each output, any spending conditions imposed on the recipient. They are
specified in a variable-length field known as ScriptPubKey or locking script.
A scriptPubKey is preceded by an adequate stream of bytes to indicate its length.

Here is an example of an actual Bitcoin transaction:

9



2020 Bassam El Khoury Seguias c©

It is displayed in human-readable form commonly referred to as JSON format
(JavaScript Object Notation).

The Version field is equal to 0x00000001 in hexadecimal notation which corresponds
to the decimal value 1.

The vin field consists of two inputs. The first contains a UTXO from a previous Bitcoin
transaction with txid (will be explained shortly):

0x756c1cf676c73b951ecb3b281b375858938b503c2b9b296d9d1cd59e839daea0

Since a Bitcoin transaction can have more than one output, it is also important to
specify which one of these outputs the UTXO corresponds to. In this case, it is the
UTXO whose index (i.e., position among all outputs of the previous Bitcoin
transaction) is equal to 0x00000000 i.e., 0 in decimal notation.

The scriptSig field which in this particular case consists of a DER-encoded ECDSA
signature and a relevant public key is a 140 byte long sequence:

0x493046022100b999de2e23127ec2edf16e2f267b4c2df57b9766059369cee85c
bc0a41be6882022100d09c405f825eec986ca2bf6f35d1267ad7d595042fca4b4f
7af3f9adfea68d330141040bf69616981e5970c992a0762f441abcadfed9fc4630fa
5e1b82ab00e81d16905d3820e073e1bd4a9dcfed336f4bf25edc634c2e17498976
7d299748359c2daf

We will discuss scriptSig fields in more detail in sections 4 and 5.

Lastly, the nSequence field is set to its maximum value of 0xffffffff.

The second input has a similar structure. Note that by setting the nSequence fields of
all the inputs to 0xffffffff, nLockTime, RBF and RLT become disabled for this Bitcoin
transaction. This indicates this transaction’s readiness for immediate mining.

The vout field has two outputs. The first corresponds to an amount of Satoshi
3,916,000 or equivalently BTC 0.03916. Moreover, this output is encumbered with a
spending condition dictated by a 25 byte long scriptPubKey. We will discuss the
operators that appear in the scriptPubKey field in section 3 and introduce specific
examples in section 4. The second output has a similar structure.

Finally, the nLockTime field is set to 0x00000000 which corresponds to decimal value
0. This indicates that the Bitcoin transaction is eligible for immediate mining. Note
that even if this value corresponded to a future block height or Unix time, it would not
have affected this particular Bitcoin transaction since all its nSequence fields were set to
0xffffffff.

A JSON representation of a Bitcoin transaction makes it easier for humans to interpret
it. However, at the level of the network, the Bitcoin transaction is represented as a

10



2020 Bassam El Khoury Seguias c©

sequence of bytes and is referred to as raw or serialized representation. Without much
difficulty, one can map a JSON to its serialized counterpart. To do so, special care must
be given to the way certain fields are represented. Specifically, the version, txid, index,
nSequence, output value, and nLockTime fields must be represented using little
endian notation. This means that the least significant byte of the field comes first,
followed by the next least significant byte and so on:

We include below a python method sourced from [15] that takes a hex string x and
changes its endianness from big to little and vice-versa:

When we translate this Bitcoin transaction’s relevant fields to their little endian
representation, we get:

• Version: Mapped from 0x00000001 to 0x01000000.

• Input #1’s previous txid: Mapped from

0x756c1cf676c73b951ecb3b281b375858938b503c2b9b296d9d1cd59e839daea0

to

0xa0ae9d839ed51c9d6d299b2b3c508b935858371b283bcb1e953bc776f61c6c75

• Input #1’s previous output index: Mapped from 0x00000000 to 0x00000000.

• Input #1 scriptSig: Is not affected and remains as is.

• Input #1 nSequence: Mapped from 0xffffffff to 0xffffffff.

• Input #2’s previous txid: Mapped from

0x7ba03bdf67824990fbdd1a48b3fdc42ab3bcddb8b808c2c30e4d3cc4c206be52

to

0x52be06c2c43c4d0ec3c208b8b8ddbcb32ac4fdb3481addfb90498267df3ba07b

• Input #2’s previous output index: Mapped from 0x00000001 to 0x01000000.

• Input #2 scriptSig: Is not affected and remains as is.

• Input #2 nSequence: Mapped from 0xffffffff to 0xffffffff.

• Output #1 value: Mapped from 0x00000000003bc0e0 (which is the 8 byte hex
representation of 3,916,000) to 0xe0c03b0000000000.

11



2020 Bassam El Khoury Seguias c©

• Output #1 scriptPubKey: Is not affected and remains the same. We will see
some common operational codes (OP codes) in section 3. Items that have the OP
prefix and appear in the scriptPubKey have unique single-byte representations.
For this Bitcoin transaction, the sequence

OP DUP OP HASH160 OP PUSHBYTES 20
e1e1ffc33423807d6914de976738bbdc01477c2d OP EQUALVERIFY

OP CHECKSIG

is encoded as:

0x76a914e1e1ffc33423807d6914de976738bbdc01477c2d88ac

• Output #2 value: Mapped from 0x0000000000012e8c (which is the 8 byte hex
representation of 77,452) to 0x8c2e010000000000.

• Output #2 scriptPubKey: Is not affected and remains as is. The sequence

OP DUP OP HASH160 OP PUSHBYTES 20
19e75cce5ff697a01e14ec3ebcc9a4523e44caf1 OP EQUALVERIFY OP CHECKSIG

is encoded as:

0x76a91419e75cce5ff697a01e14ec3ebcc9a4523e44caf188ac

• nLockTime: Mapped from 0x00000000 to 0x00000000.

Putting it together, we get the following serialized representation:

The bold black bytes correspond to those that did not appear in the JSON format:

• The first 0x02 byte is an input counter and indicates that there is a total of two
inputs. The input counter is of variable length. We will explain the mechanics of
variable length encoding in the following paragraph.

12



2020 Bassam El Khoury Seguias c©

• The 0x8c byte indicates the length of the first scriptSig. The scriptSig is of
variable length and in this case corresponds to a decimal value of 140 bytes.

• The length of the second scriptSig is 139 bytes or 0x8b in hexadecimal.

• The second 0x02 byte is an output counter and indicates that there is a total of
two outputs. The output counter is also of variable length.

• Finally, each of the two scriptPubKey fields is 25 byte long or 0x19 in
hexadecimal. The scriptPubKey field is also of variable length.

We now describe how variable length encoding works for a Bitcoin transaction:

• If the length is less than or equal to 252 bytes, then the length value is captured
in a single byte (e.g., the input and output counters in the previous example).

• If 253 ≤ length < 216, we include a prefix of 0xfd followed by a two-byte little
endian representation of the actual length.

• If 216 ≤ length < 232, we include a prefix of 0xfe followed by a four-byte little
endian representation of the actual length.

• If 232 ≤ length < 264, we include a prefix of 0xff followed by an eight-byte little
endian representation of the actual length.

The table below illustrates variable length encoding for various length values:

We now include two python methods from [15] to perform variable length encoding:

• int2byte(a,b): This method converts integer a into its byte representation (i.e.,
base 256) such that the outcome’s length is b bytes. The output is in hex format.

13



2020 Bassam El Khoury Seguias c©

• encode Varint(value): This method converts an integer value to its varint
hexadecimal format.

The table below summarizes the aforementioned serialization procedure:

Before wrapping up this section, we introduce a convenient way of referencing a Bitcoin
transaction. We define the transaction id or txid to be the little endian representation
of the double SHA256 of the serialized transaction. In other words, the raw transaction
gets subjected to the SHA256 hash function two consecutive times before the outcome

14



2020 Bassam El Khoury Seguias c©

gets converted to little endian representation.

The collision resistance property of hash functions (refer to the chapter entitled ”Digital
Signatures and Other Prerequisites” for an introduction to hash functions) provides an
assurance that the probability of having two distinct Bitcoin transactions sharing the
same txid is negligible. As a result, one can treat the txid as a unique identifier for all
practical matters. Assuming tx raw holds the raw representation of a Bitcoin
transaction, its txid can be derived as follows:

change Endianness(double Sha256(tx raw))

For example running this on the previous Bitcoin transaction yields a txid of:

0xdbebe45e62370aeab972a9bbbee80f99febe6c904fe49b68efe7cc877a6cfd73

One can use the following get Serialized Tx python method to retrieve the raw
representation of a given Bitcoin transaction. It takes a txid and a network specification
(i.e., ”mainnet” or ”testnet”) as inputs and outputs the raw format of the corresponding
Bitcoin transaction. It does so by initiating an API call to adequate platforms.

3 Bitcoin Script

Script: A Bitcoin transaction uses a specific language to express encumbrances
related to spending a certain UTXO. The Script language is relatively simple as it is
stack-based. A stack is a type of a linear data structure with a well defined order for
performing operations. In layman terms, it is an ordered collection of items that one
can either add to or remove from. Usually, the last added item is the first one to be
removed justifying the ”Last In First Out” or LIFO terminology. We commonly refer to
the act of adding an item to the stack as pushing and to that of removing as popping.

15



2020 Bassam El Khoury Seguias c©

Bitcoin’s Script rule book is not very complicated and its modus operandi includes the
following:

* Expressions are parsed left to right, causing the leftmost factor to be pushed first
onto the stack.

* Items on the stack are manipulated through various operational codes known as
opcodes. Each one of them is internally represented as a single byte. Due to the
way they are defined, opcodes are preceded with the OP prefix.

* Depending on the opcode in use, the resulting output may either get pushed onto
the stack or not.

* An expression is considered valid if after parsing, the top item on the stack
evaluates to True.

We first introduce some of the opcodes commonly used to define locking conditions on
bitcoin UTXOs. We will not cover the opcode set in its entirety and point interested
readers to [1] for a comprehensive list.

• Some of the most simple opcodes do not take any input (i.e., don’t operate on any
factor) and output a constant integer value that gets pushed onto the stack
whenever invoked. For instance each opcode in {OP N, N = 1, ..., 16} pushes a
specific integer 1 ≤ N ≤ 16 onto the stack. OP N has a corresponding opcode
byte whose decimal representation is given by 80 + N. For example, OP 15
corresponds to a single byte whose decimal representation is 95 or 0x5f in hex.

• Whenever new data must be pushed onto the stack, the program must be told
when said data starts and when it ends. The way this is implemented in Bitcoin

16



2020 Bassam El Khoury Seguias c©

involves the usage of specific data push opcodes. Note that data bytes pushed
onto the stack are always represented in little endian notation. Broadly speaking,
data push opcodes come in two forms:

1. A set of 75 opcodes {OP PUSHBYTESi, i ∈ {1, .., 75}} whose decimal
(hex) representations range from 1 (0x01) to 75 (0x4b). Each one of them
indicates that a number of bytes equal to their decimal representation will be
pushed next onto the stack. For example, when the program encounters the
byte whose hex representation is 0x0e it knows that the subsequent 14 bytes
will have to be pushed onto the stack. That is assuming that 0x0e is not
itself part of a data stream being currently pushed onto the stack.

2. A set of opcodes used to push data of byte size greater than 75. This set
contains three opcodes: OP PUSHDATA1, OP PUSHDATA2 and
OP PUSHDATA4. Their respective decimal (hex) representations are
given by 76 (0x4c), 77 (0x4d), and 78 (0x4e).

OP PUSHDATAi, i ∈ {1, 2, 4} indicates that the following i bytes will hold
the value of the actual number of data bytes to be pushed onto the stack.
For example, invoking OP PUSHDATA2 followed by the two bytes 0xa201
(note that the protocol always uses little endian representation) indicates
that the subsequent 418 bytes will be pushed onto the stack. Note that the
maximum amount of bytes that can be pushed is equal to 520 and as a
result, OP PUSHDATA4 is not of much use.

Also note that one could theoretically use OP PUSHDATAj, j ∈ {2, 4} to
push any number of data bytes that OP PUSHDATAi, i ∈ {1, 2}, i < j
could otherwise push. In addition, one could use OP PUSHDATA1 to push
any number of bytes between 1 and 75, the same way opcodes 0x01 to 0x4b
could. However, these alternatives are considered non-standard and most of
the nodes that encounter them will not relay them to their peers.

• In some instances, the topmost element of the stack must be duplicated in order
to run specific operations. OP DUP with decimal representation 118 (and hex
representation 0x76) does precisely that. It pops the topmost item on the stack,
creates a copy of it and then pushes them both onto the stack.

• Another important function needed for various verification tasks is that of
comparing two quantities and checking if they are equal. Two opcodes could be
used to conduct this comparison:

1. OP EQUAL with decimal representation 135 (and hex representation 0x87)
pops the top 2 elements of the stack and compares them. If they are equal, it
pushes a value of 1 onto the stack. If not, it pushes a value of 0.

2. OP EQUALVERIFY with decimal representation 136 (and hex
representation 0x88) pops the top 2 elements of the stack and compares
them. If they are equal, then the operations continue normally without
pushing anything onto the stack. Otherwise, the program execution fails.

17



2020 Bassam El Khoury Seguias c©

• In addition, Script has a number of built-in opcodes that conduct various
cryptographic operations. In particular:

1. OP HASH160 with decimal representation 169 (and hex representation
0xa9) pops the topmost item on the stack, hashes it using SHA256 and then
hashes the result using RIPEMD160 before pushing the final output onto the
stack. For an introduction to Bitcoin’s hashing functions, we refer the reader
to the chapter entitled ”Bitcoin - Private key, Public key, and Addresses”.

2. OP HASH256 with decimal representation 170 (and hex representation
0xaa) pops the topmost item on the stack, runs two SHA256 hashing
iterations on it, and then pushes the result onto the stack.

3. OP CHECKSIG with decimal representation 172 (and hex representation
0xac) does the following:

3.1 It first creates the message against which a given signature must be
verified. The message consists of a hash of various elements of a Bitcoin
transaction and we will later see in section 7 how it is formed depending
on what part of the Bitcoin transaction gets included.

3.2 It then pops the two topmost items on the stack, which should consist of
a signature followed by a corresponding public key.

3.3 It uses the public key to verify the validity of the signature on the
message (the reader can refer to the post entitled ”Bitcoin - Elliptic
Curve Digital Signature Algorithm (ECDSA)” for an introduction to
Bitcoin’s signing algorithm).

3.4 It pushes 1 onto the stack if the signature is valid, and 0 otherwise.

OP CHECKSIGVERIFY with decimal representation 173 (0xad in hex)
is similar to OP CHECKSIG except that no value gets pushed onto the stack.
If the output is true, the program continues to run. Otherwise, it halts.

4. OP CHECKMULTISIG with decimal representation 174 (0xae in hex)
conducts an iterative version of OP CHECKSIG over m different
signatures and n public keys. In this case,

4.1 Due to a design error, it pops the (m + n + 3) topmost stack items
instead of (m + n + 2). This is why in order to effectively invoke it, an
additional empty array of bytes (OP 0) gets added onto the stack before
execution (we will revisit this when we discuss specific examples of
scriptPubKey in section 4).

4.2 The (m + n + 2) topmost items on the stack should consist of a sequence
including signatures (sig1, ..., sigm) followed by integer m ≥ 2
(represented by OP m), followed by a sequence of public keys
(pk1, ..., pkn), and finally integer n ≥ m (represented by OP n).

18



2020 Bassam El Khoury Seguias c©

4.3 The opcode takes the first signature sig1 and verifies it against its
associated message and public key. Note that the message is constructed
similarly to the case of OP CHECKSIG which we will explore later in
section 7. In order to identify the coresponding public key, the program
runs sequentially through the public key set starting at pk1 until it gets a
validation or exhausts them all. Without loss of generality, let pkr be a
corresponding match for some r ∈ {1, ..., n}.

4.4 The opcode then repeats the same process with the second signature
sig2. The difference is that it parses the public key set starting
immediately after the one that resulted in a match in the previous
iteration, i.e., at pkr+1.

4.5 The above step is repeated until all signatures get verified or no more
public keys remain.

4.6 If all signatures get verified, then the opcode pushes the value 1 onto the
stack. Otherwise, it pushes 0 instead.

Note that the above procedure dictates that signatures must be ordered in
the same way as their corresponding public keys. That means that if
(sigi1 , pkj1) and (sigi2 , pkj2), i1, i2 ∈ {1, ...,m}, j1, j2 ∈ {1, ..., n} are a pair of
tuples of matching signatures and public keys, then:

∀ i1, i2 ∈ {1, ...,m}, i1 ≤ i2 ⇒ j1 ≤ j2

OP CHECKMULTISIGVERIFY with decimal representation 175 (and
hex representation 0xaf) is similar to OP CHECKMULTISIG except that no
value gets pushed onto the stack. If the output is true, the program
continues to run. Otherwise, it halts.

• More elaborate spending conditions can be created using Script’s built-in flow
control that includes if-else statements. An important observation is that Script
does not allow loops (e.g., ”for” or ”while” loops) and is hence a Turing
incomplete language. Initially, this may seem as a limitation. However, it is a
well-thought design constraint meant to strengthen Bitcoin’s underlying security.
Indeed, a Turing complete language could pave the way to infinite loops that
malicious attackers use to jeopardize the proper functioning of nodes on the
network by causing them to get stuck or crash. Despite this design limitation,
various complex scripts can still be devised using Script’s flow control statements:

1. OP IF with decimal representation 99 (0x63 in hex) pops the topmost item
and checks its value. If it is true (i.e., a positive integer), the condition
following OP IF gets executed. Otherwise, the condition is disregarded.

2. OP ELSE with decimal representation 103 (0x67 in hex) checks if the
preceding OP IF or OP ELSE condition was executed. If not, the current
condition gets executed. Otherwise, the condition is disregarded.

19



2020 Bassam El Khoury Seguias c©

3. OP ENDIF with decimal representation 104 (0x68 in hex) always concludes
an if-else block.

• There are two additional opcodes that merit special attention due to the flexibility
they introduce in defining time-bound spending conditions. Together with
control flow statements, they can be used to devise more elaborate spending
conditions as we will see in section 4:

1. OP CHECKLOCKTIMEVERIFY (OP CLTV) with decimal
representation 177 (0xb1 in hex) was introduced in BIP 65 [18] to lock
UTXOs and make them unspendable until a future time or block height.

The option of imposing time-bound spending conditions predates OP CLTV.
We previously saw how a Bitcoin transaction’s nLockTime field ensures that
it does not get mined until a future time or block height. nLockTime is
however limited in effect since it is applied at the Bitcoin transaction level
and not at the more granular UTXO level. This limitation is rooted in the
fact that nLockTime makes it possible to spend a UTXO in the future but
does not guarantee that it remains unspendable until then. Indeed, a UTXO
appearing in a Bitcoin transaction with an activated nLockTime could be
used in a separate transaction that unlocks it at an earlier time instance or
block height. It is the ability to enforce unspendibility at the level of each
UTXO that confers to OP CLTV its advantage over nLockTime.

It is important to note that the argument fed to OP CLTV abides by the
same rules that apply to nLockTime. More specifically, the argument is a 4
byte long unsigned integer that denotes a block height or a time instance
depending on how it compares to the threshold value of 500, 000, 000.

Clearly, a valid Bitcoin transaction must have valid UTXOs. In particular, a
time-bound constraint imposed on a Bitcoin transaction must be satisfied by
all its UTXOs before the transaction gets validated. As a result, OP CLTV’s
argument must be less than or equal to the nLockTime value.

Being an opcode of the ”verify” type, OP CLTV halts execution if the
outcome is False and continues normally without adding any new elements to
the stack in case the outcome is True. More specifically, and as described in
BIP 65, OP CLTV reads the topmost stack element and evaluates to False if:

i. the stack is empty; or

ii. the top item on the stack is less than 0; or

iii. the lock-time type (time or block height) of the top item and the
nLockTime field are not the same (i.e., one with an argument value
below 500, 000, 000 and another above); or

iv. the top stack item is greater than the transaction’s nLockTime field; or

v. the nSequence field of the relevant transaction input is 0xffffffff.

Once OP CLTV is executed successfully, its argument stays on the top of the

20



2020 Bassam El Khoury Seguias c©

stack. In some instances, it may need to be dropped to ensure proper
subsequent script execution. As a result, it is common to see CLTV scripts
paired with the OP DROP opcode whose decimal representation is 117
(0x75 in hex). All OP DROP does is remove the topmost stack item.

2. OP CHECKSEQUENCEVERIFY (OP CSV) with decimal value 178
(0xb2 in hex) serves a similar purpose as OP CLTV in that it locks a UTXO
and enforces its unspendibility until a certain future time or block height. It
differs from OP CLTV in that the future time or block-height is relative to
the time or block height when the UTXO was mined.

Similar to nLockTime, nSequence is a transaction level field. This may seem
counter-intuitive since as we saw earlier in section 2, nSequence is specified
for each input while nLockTime is specified for the overall Bitcoin
transaction. However, none of these nSequence fields directly encumbers a
UTXO. As a matter of fact, one could reuse the UTXO in a separate
transaction that spends it at an earlier time. This led to the introduction of
a UTXO-level opcode to enforce relative-time locking on a specific
transaction output. OP CSV fulfills this role as articulated in BIP 112 [10].

Being an opcode of the ”verify” type, CSV halts execution if the outcome is
False and continues normally without adding any new elements to the stack
in case the outcome is True. More specifically, OP CSV takes a 32 bit
sequence as an argument which can indicate a relative time or block height.
Its structure is similar to nSequence previously introduced in section 2.
OP CSV reads the topmost stack element and evaluates to False in case:

i. the stack is empty; or

ii. the top item on the stack is less than 0; or

iii. the top item on the stack has the Disable Flag unset; and

> the Bitcoin transaction version is less than 2; or

> the Bitcoin transaction input nSequence’s Disable Flag is set; or

> the relative lock-time type is not the same as that of the
corresponding input’s nSequence; or

> the value corresponding to the least significant 16 bits of top stack
item is greater than that corresponding to the Bitcoin transaction
input’s nSequence. Note that the logic for this requirement is similar
to that of nLockTime and OP CLTV i.e., a valid Bitcoin transaction
must have valid UTXOs and as a result, a UTXO unlocking time
must not be greater than the one specified by the transaction.

Once OP CSV is executed successfully, its argument remains on the stack. In
some cases it may need to be dropped to ensure proper subsequent execution.
As a result, it is common to see CSV scripts paired with OP DROP.

21



2020 Bassam El Khoury Seguias c©

• Last but not least, there is one special opcode that whenever invoked, turns a
Bitcoin transaction into an invalid one. This is the OP RETURN opcode with
decimal representation 106 (0x6a in hex). This opcode is particularly useful for
adding data onto the blockchain as we will see later in section 6.

4 Examples of locking scripts (scriptPubKey)

In this section we introduce a number of scriptPubKeys or locking scripts along with
their corresponding scriptSigs or unlocking scripts to illustrate how encumbrances are
typically encoded. Clearly, this is but a small subset of the universe of possible locking
conditions that could be devised in Script. We will go over the following scriptPubKey
examples:

1. Pay-To-Public-Key also referred to as P2PK.

2. Pay-To-public-Key-Hash also referred to as P2PKH.

3. Pay-To-Multiple-Signature also referred to as P2MS.

4. Freezing funds using OP CLTV.

5. Trustless payment for publishing data using OP CLTV and conditional flow.

6. Escrow functionality with timeout using OP CSV and conditional flow.

7. Pay-To-Script-Hash also referred to as P2SH.

Before going into each of these examples in detail, note that by convention, we enclose
in angle brackets (i.e., < >) any data that needs to be pushed onto the stack. In other
words, brackets correspond to an appropriate data push opcode i.e., OP PUSHBYTESi
(i ∈ {1, .., 75}) or OP PUSHDATAj (j ∈ {1, 2, 4}).

1. P2PK: In a Pay-To-Public-Key locking script, a UTXO is tied to a particular
public key. Only the owner of the private key corresponding to this public key

22



2020 Bassam El Khoury Seguias c©

could unlock its Satoshis and transfer them at will. In Bitcoin’s Script, a P2PK
scriptPubKey takes the following form:

<PubKey> OP CHECKSIG

In order to unlock it, the legitimate owner must provide a signature that can be
verified using that public key. The unlocking process proceeds as follows:

The first ever Bitcoin transaction that Satoshi Nakamoto initiated to sent BTC 10
to Hal Finney had P2PK scriptPubKeys for both its outputs. Its txid is:

0xf4184fc596403b9d638783cf57adfe4c75c605f6356fbc91338530e9831e9e16

P2PK scriptPubKeys are now considered obsolete. They were used in Bitcoin’s
early days and have been replaced by the more cost-efficient and secure P2PKH:

• As we will shortly see, P2PKH is more cost-efficient since it uses a 20 byte
long hashed construct as opposed to the 65 byte uncompressed or 33 byte
compressed public key. A reduction in the overall byte size of a Bitcoin
transaction brings its cost down.

• P2PKH is thought to be more secure because its usage of a hashed construct
does not expose the public key of the sender prior to broadcasting the
Bitcoin transaction. To better appreciate this, note that if the Elliptic Curve
Cryptography Discrete Logarithm Problem were to be solved (through e.g.,
future quantum computations), then one would be able to derive the private
key from its public counterpart and claim the relevant Satoshis. On the other
hand, the SHA256 hash function is not known to be reducible to a
computationally hard problem and is thought to be quantum resistant.

2. P2PKH: A P2PKH locking script has a similar purpose as P2PK. A UTXO gets
tied to a particular public key and only the owner of the corresponding private key
can spend it. The proof of legitimate ownership is however conducted in a different
way. In Bitcoin’s Script, a P2PKH scriptPubKey takes the following form:

23



2020 Bassam El Khoury Seguias c©

OP DUP OP HASH160 <PubKeyHash> OP EQUALVERIFY OP CHECKSIG

In order to unlock it, the legitimate owner must provide a valid signature and the
appropriate public key. The unlocking process proceeds as follows:

The Bitcoin transaction example that we introduced in section 2 has P2PKH
scriptPubKeys associated with its two outputs. Its txid is:

0xdbebe45e62370aeab972a9bbbee80f99febe6c904fe49b68efe7cc877a6cfd73

Note that in a P2PKH locking script, only the hash of the public key is made
explicit. This stands in contrast to a P2PK locking script where the actual public
key is fully revealed. Recall that it is this difference that confers to a P2PKH
scriptPubKey its security and cost advantages over P2PK.

3. P2MS: A P2MS locking script can be thought of as a generalization of P2PK.
Instead of encumbering the output by one public key, it gets encumbered by at
least two public keys. A P2MS scriptPubKey takes the following form:

OP M <PubKey 1> ... <PubKey N> OP N OP CHECKMULTISIG

In order to unlock it, M out of N (where M ≤ N) private keys must each provide a
valid signature. The unlocking process proceeds as follows:

24



2020 Bassam El Khoury Seguias c©

Here is the txid of a Bitcoin transaction whose output’s locking script is a 2 of 3
P2MS:

0x581d30e2a73a2db683ac2f15d53590bd0cd72de52555c2722d9d6a78e9fea510

P2MS locking scripts are not used anymore and have been replaced by the shorter
and more secure Pay-To-Script-Hash (P2SH) version that we will introduce at the
end of this section.

4. Freezing funds using CLTV: Bitcoin’s Script offers the possibility of making a
Bitcoin transaction output unspendable until a future date or block height. To do
so, one can make use of OP CLTV in the following scriptPubKey:

<expiry time> OP CLTV OP DROP OP DUP OP HASH160 <pubKeyHash>
OP EQUALVERIFY OP CHECKSIG

To unlock it, the legitimate owner must first wait for the expiry date to be
reached and then provide an adequate signature and public key. The unloking
process proceeds as follows:

25



2020 Bassam El Khoury Seguias c©

5. Trustless payment for publishing data using CLTV and conditional
flow: Purchasing content in physical form (e.g., books, magazines) when the seller
and the buyer are co-located is a relatively straightforward process. In big part,
this is due to the natural resolution of two distinct trust-related problems:

(a) Providing the assurance to the buyer that the desired content is available.

(b) Providing the assurance to the seller that payment will be received in
exchange of releasing the content and to the buyer that the content will be
accessible upon payment.

Addressing these concerns in the context of data in digital form when the seller
and buyer are not co-located is more challenging. Typical resolution mechanisms
involve trusting a ”neutral” third party acting as an escrow provider. A question
of both practical and philosophical relevance is whether these concerns could be
addressed trustlessly. Cryptography and Bitcoin Script help answer affirmatively.

• Proving availability of the desired content: Different solutions have
been proposed to address this problem. Peter Todd’s Paypub protocol
displays to the potential buyer a random subset of the digital content that
she wishes to purchase. For a large enough subset, this provides acceptable
assurance in the availability of the required data. For more details about the
protocol, readers can refer to [19].

Another resolution relies on the notion of a Zero Knowledge Proof
(ZKP). ZKPs merit a separate post and are excluded from this note. For a
brief introduction, the reader can refer to e.g., [6]. For our purposes, we limit
ourselves to introducing them as:

– Cryptographic constructs that allow a Prover to demonstrate her
possession of a specific piece of knowledge to a Verifier.

26



2020 Bassam El Khoury Seguias c©

– In addition, the proof must not leak any information to the Verifier
including information pertaining to the possessed knowledge.

– Finally, the Verifier will assert the validity of the proof if and only if the
Prover has the claimed knowledge.

The last two points imply that the Verifier will not be able to reproduce the
proof. ZKP may seem counter-intuitive, most likely because we are used to
mathematical proofs where the reasoning involved in proving or disproving a
statement must be made public for it to be independently verified.

Sean Bowe built on an idea of Gregory Maxwell to implement the first ZKP
in the context of a contingent payment Bitcoin transaction in 2016. The data
purchased by Maxwell was a solution to a 16 by 16 Sudoku solved by Bowe.
This ZKP was interactive i.e., involved initial data exchange between the
Prover (Bowe) and the Verifier (Maxwell). Given:

– The Sudoku puzzle whose solution is desired,

– A 256-bit long hash value H,

– An encrypted answer E,

The Prover demonstrates to the Verifier that:

– They possess the answer A to the Sudoku puzzle,

– They possess the decryption key Dk which when applied to E outputs A,

– H is the SHA256 hash of Dk.

Following this interactive proof, Maxwell had overwhelming assurance that
Bowe possessed the answer and the decryption key Dk. For more
information, interested reader can consult [14], [8], and [9].

• Ensuring that the payment takes place if and only if the desired
data is released: This is the part where Bitcoin Script lends a helping hand
and allows one to devise a locking script that releases payment if and only if
the desired data is made public. The following scriptPubKey achieves this by
making use of conditional flow statements and of OP CLTV:

OP SHA256 <H> OP EQUAL

OP IF

<Seller Pubkey>

OP ELSE

<future block height> OP CLTV OP DROP

<Buyer Pubkey>

OP ENDIF

OP CHECKSIG

In order to unlock the funds, the seller must provide the correct Dk along
with a valid signature. If the seller fails to provide the required Dk, the
”OP ELSE branch goes into effect causing funds to be returned to the buyer

27



2020 Bassam El Khoury Seguias c©

after a pre-defined time if the buyer provided a valid signature. To better
understand this, we consider these two cases in more detail:

28



2020 Bassam El Khoury Seguias c©

We will look at an example of a Bitcoin transaction that implements such a
locking script when we introduce P2SH a bit later in this section.

6. Escrow functionality with timeout using CSV and conditional flow:
BIP112 [10] introduces a scriptPubKey that implements an escrow functionality
that expires after a certain amount of relative time (relative to the UTXO
creation time):

OP IF

OP 2 <Alice’s pubkey> <Bob’s pubkey> <Escrow’s pubkey> OP 3
OP CHECKMULTISIG

OP ELSE

<relative expiry term> OP CHECKSEQUENCEVERIFY OP DROP

<Alice’s pubkey> OP CHECKSIG

OP ENDIF

This locking script involves three parties:

(a) Alice which could represent e.g., a buyer of a service or good.

(b) Bob which could represent e.g., a seller of a service or good.

(c) Escrow, which acts as a third neutral party.

For a certain period of time, any 2 of the 3 parties have the ability to unlock the
funds and release them to the seller. For example, if Alice received the good(s) or
service(s) from Bob within the pre-specified time but abstained from releasing the
payment, Escrow and Bob can both unlock the transaction that pays Bob. On the
other hand, if Bob fails to fulfill his end of the bargain within the specified time,
the funds go back to Alice.

The unlocking process proceeds as follows:

29



2020 Bassam El Khoury Seguias c©

7. P2SH: Pay to Script Hash Bitcoin transactions accommodate a wide range of
locking scripts. This class of transactions was introduced and formalized in BIP
16 [5]. Instead of asking the sender to supply all the spending conditions at the
time of the transaction’s creation, the new structure reduces this burden to a
single encumbrance. Namely, a 20 byte hash that the receiver is required to
reproduce at the time of redemption. The hash pre-image is a script with one or
more spending conditions and is commonly referred to as redeemScript. More
specifically, P2SH transactions involve the following steps:

• The receiver(s) specify the spending conditions and generate an appropriate
redeemScript.

• The redeemScript gets mapped to a relevant Bitcoin address starting with
the numeral 3. The mapping process was outlined in the chapter entitled
”Bitcoin Private Key, Public Key, and Addresses”. As a reminder:

– The redeemScript is serialized with all opcodes converted to binary.

– The serialized output gets subjected to a HASH160 operation (i.e., a
SHA256 followed by a RIPEMD160) resulting in a 20 byte hash.

– The hash is prefixed with a byte whose hex representation is 0x05.

– The resulting 21 byte string is appended with a 4 byte checksum.

– The resulting 25 byte string is converted to Base58 to form the address.

• The address is communicated to the sender who can subsequently issue a
Bitcoin transaction with a single encumbrance, namely the requirement that
the redeemer be able to reproduce the 20 byte hash of the redeemScript.

30



2020 Bassam El Khoury Seguias c©

• When the redeemer reproduces the appropriate redeemScript, the latter gets
evaluated to ensure proper observance of all its spending conditions.

The new structure minimizes the burden on the sender by shifting the need to
supply the spending conditions from the sender to the redeemer. In Bitcoin’s
Script, a P2SH scriptPubKey takes the following form:

OP HASH160 <20-byte-redeemScript-hash> OP EQUAL

To unlock it, the owner(s) must provide a valid redeemScript in addition to any
information required by the redeemScript’s locking conditions. We illustrate this
process for two distinct P2SH transactions:

(a) One where the redeemScript correpsonds to a seller unlocking funds in the
context of a trustless payment for publishing data.

(b) One where the redeemScript correpsonds to an M-of-N multisignature.

Example 1: P2SH - Trustless Payment for Publishing Data:

For an example, one can consider the actual Bowe-Maxwell contingent payment
Bitcoin transaction mentioned earlier. Its txid is:

0x200554139d1e3fe6e499f6ffb0b6e01e706eb8c897293a7f6a26d25e39623fae

31



2020 Bassam El Khoury Seguias c©

It has a single input whose UTXO is locked using a P2SH script. The
redeemScript can be read as:

OP SHA256 OP PUSHBYTES 32
5a917fe0e9a08004ea16bd682d656f8780b33af30c1e6d1b483652cecbb9d290
OP EQUAL

OP IF

OP PUSHBYTES 33
0219b65599338687c784f5b78a23cac164a9094e94af6ec49532132da22d74e422

OP ELSE

OP PUSHBYTES 3 931b06 OP CLTV OP DROP

OP PUSHBYTES 33
02cff5fe1dae742d57cf2be42ae607f28ae0e4837019ca4b8b1bcdc96bcf4af9ee

OP ENDIF

OP CHECKSIG

We see that:

• The hash H of the decryption key Dk is:

0x5a917fe0e9a08004ea16bd682d656f8780b33af30c1e6d1b483652cecbb9d290

• The seller’s public key is:

0x0219b65599338687c784f5b78a23cac164a9094e94af6ec49532132da22d74e422

• The future block height is three bytes long and given by 0x931b06 in little
endien notation. This corresponds to a decimal value of 400, 275.

• The buyer’s public key is:

0x02cff5fe1dae742d57cf2be42ae607f28ae0e4837019ca4b8b1bcdc96bcf4af9ee

By serializing this redeemScript (i.e., converting all opcodes to their
corresponding byte-representation) we find that {redeemScript} is:

0xa8205a917fe0e9a08004ea16bd682d656f8780b33af30c1e6d1b483652cecbb9d290876
3210219b65599338687c784f5b78a23cac164a9094e94af6ec49532132da22d74e42267
03931b06b1752102cff5fe1dae742d57cf2be42ae607f28ae0e4837019ca4b8b1bcdc96b
cf4af9ee68ac

Subjecting this string to SHA256 followed by RIPEMD160 we obtain the
following 20-byte hash:

0xecc23533aa4b1c12421c05bcd11abe181b3f4515

This result matches the redeemScript hash that appears in the P2SH locking

32



2020 Bassam El Khoury Seguias c©

script. After this validation, the actual redeemScript gets executed. Note that the
scriptSig associated with this redeemScript can be read from the Bitcoin
transaction as:

• Seller’s signature: 0x3044022060402771d8339b3bd09028c574912f09395f94a8
aa6e58b4d056605efcdc1c2802206cc94da4c9aeecee402ad5c740a5027cb9312a
33566b13fdc35f07086491ed6b01

• Decryption key Dk :

0xbcf548de9614da26651fec6b48a696b0afc123a2b2d96449635ec92f58a5d882

Finally, note that the SHA256 of Dk evaluates to:

0x5a917fe0e9a08004ea16bd682d656f8780b33af30c1e6d1b483652cecbb9d290

which matches the value H provided in the redeemScript. The ”OP IF” branch of
the locking script is then executed, the signature provided by the seller matched
against his public key and upon verification, the funds transferred to the seller.

Example 2: P2SH - Multisignature example:

Note that {redeemScript} is pushed onto the stack using a PUSHDATA opcode.
We have previously seen in section 3 that the maximum amount of bytes that a
PUSHDATA operator can accommodate is 520 bytes. As a result, and in order to

33



2020 Bassam El Khoury Seguias c©

ensure backward compatibility, {redeemScript} must not exceed 520 bytes. For
the specific case of an M-of-N multisignature P2SH Bitcoin transaction where
each public key is 33 bytes long in compressed format, this translates to a
maximum N of 15 public keys. To see why, note that the {redeemScript} of an
M-of-15 multisignature will be 513 bytes long, while that of an M-of-16 will be 547
bytes long because:

• OP M consumes 1 byte

• Each public key requires 34 bytes (1 byte prefix ∈ {0x02, 0x03}, and the 33
bytes of content). 15 public keys result in a total of 510 bytes, while 16
public keys result in 544 bytes > 520.

• OP N consumes 1 byte

• OP CHECKMULTISIG consumes 1 byte.

As an example, one can refer to the 2-of-3 multisignature P2SH Bitcoin
transaction with txid:

0xeeab3ef6cbea5f812b1bb8b8270a163b781eb7cde10ae5a7d8a3f452a57dca93

Irrespective of the length and complexity of the redeemScript, the scriptPubKey
of a P2SH Bitcoin transaction is always 23 byte long (1 byte for OP HASH160, 1
byte for an appropriate PUSHDATA opcode preceding the 20 byte redeemscript
hash to be pushed onto the stack, 1 byte for OP EQUAL). As a result, a P2SH
Bitcoin transaction benefits from a clear cost advantage. In addition, one could
argue that it also offers a security advantage steming from not having to publish
the details of the redeemScript (including e.g., public keys) at the time of issuing
a Bitcoin transaction.

We conclude this section by reproducing some statistics sourced from [2]. The following
charts display two sets of information:

1. The distribution over time of bitcoins stored in UTXOs locked by the various
scriptPubKey types

2. The evolution over time of the total number of UTXOs associated with the
various scriptPubKey types.

34



2020 Bassam El Khoury Seguias c©

35



2020 Bassam El Khoury Seguias c©

5 A closer look at transactions spending P2PKH or

P2SH-MS outputs

In this section, we look more closely at two of the most common types of Bitcoin
transactions: 1) Transactions that spend a P2PKH output, and 2) Transactions that
spend a P2SH-MS output.

In order to better appreciate their underlying mechanisms, we dedicate the bulk of this
section to building python scripts that help, among other things, to serialize and
deserialize them:

• First, we introduce a set of three helper methods to parse different hexadecimal
strings. They include method parse Hexstr, method parse Elem and method
parse Varint.

• Next, we introduce the scriptPubKey Type method that checks if a given
locking script is of the P2PKH type, P2SH type, or neither.

• We then build the parse ScriptSig P2PKH and parse ScriptSig P2MS
methods that respectively check if an unlocking script corresponds to a P2PKH or
to a P2SH-MS scriptPubKeys and in the process, extract relevant information.
We limit ourselves to these two types and do not cover other cases.

• Lastly, we define the BTC TX class that allows us to instantiate a Bitcoin
transaction object inclusive of all its attributes. Within it, we define a number of
methods including serialize and deserialize.

36



2020 Bassam El Khoury Seguias c©

We point out that the code in this section is meant for educational purposes only. It
does not cover the full spectrum of allowable Bitcoin transactions and is hence limited
in scope. Moreover, the code has not been optimized for performance or size but rather
for ease of illustrating the various building blocks of a Bitcoin transaction.

First, we define a subset of useful opcodes and their corresponding byte representation:

Next, we introduce a set of three helper methods to parse various strings and elements.
These methods are slightly modified versions of the ones presented in [15]:

• Method parse Hexstr(str hex, index, length) takes a hexadecimal string
str hex, an index value denoting where to start the parsing and the length of
the sub-string to be extracted. It returns the extracted sub-string and an updated
index pointing to the end of the sub-string.

• Method parse Elem(tx, length) takes a Bitcoin transaction object tx and
extracts a sub-component of a given length from tx’s serialized representation. It
also updates the offset attribute of tx.

• Method parse Varint(tx) takes a Bitcoin transaction object tx and extracts a
sub-component of variable length as per the varint encoding rules described in
section 2. It returns two outputs. The first is the string of bytes containing the
length value inclusive of the adequate prefix. The second output is the same as
the first but exclusive of the prefix.

37



2020 Bassam El Khoury Seguias c©

Before moving onto building the BTC TX class, we introduce three methods to parse
and extract relevant information from scriptPubKey and scriptSig fields.

Method scriptPubKey Type(hexstr) takes a hexadecimal string and compares its
structure to that of a P2PKH and P2SH scriptPubKeys. It outputs a string describing
whether it is either of these types or neither:

The following method parse ScriptSig P2PKH(hexstr) takes a hexadecimal string
and parses it against the expected scriptSig of a P2PKH locking script. We know from
section 4 that it should be of the form <Sig><PubKey> . The method returns a
two-tuple consisting of the signature and the public key (both inclusive of their
respective leading length bytes). In case the input is not a relevant scriptSig, the
method outputs two empty arrays:

38



2020 Bassam El Khoury Seguias c©

In Step 1, the input string’s length is tested first. In case it is not long enough to
accommodate a byte (i.e., 2 nibbles) containing the length of the signature, then the
scriptSig cannot correspond to a P2PKH scriptPubKey. Otherwise, it proceeds to
extract the length of the signature (expressed in units of nibbles) and store it in variable
siglen. It then invokes the previously introduced parse Hexstr method to extract the
DER-encoded signature (inclusive of its leading length byte) and store it in variable sig.

In Step 2, the method conducts another test on the string’s length. If the remaining
part of the string is not long enough to accommodate a byte containing the length of
the public key, the method returns two empty arrays. Otherwise, the method proceeds
to extract the length of the public key (expressed in units of nibbles) and store it in
variable pubklen. It then invokes the parse Hexstr method one more time to extract
the public key (inclusive of its leading length byte) and store it in variable pubk.
Subsequently, the method conducts a check to ensure that the first byte following the
public key’s length byte correspond to an acceptable prefix (i.e., ’0x02’, ’0x03’, ’0x04’).

Finally, the method verifies that the end of the string has been reached.

Method parse ScriptSig P2MS(hexstr) takes a hexadecimal string and parses it
against the scriptSig of a P2SH-MS scriptPubKey of the form:

OP 0 <Sig 1>..<Sig M><{redeemScript}>

{redeemScript} is the serialized version of the redeemScript. In this case it is given by:

OP M <PubKey 1>..<PubKey N> OP N OP CHECKMULTISIG

The method returns a 4-tuple consisting of:

1. A string indicating whether the P2SH redeemScript is of type multisignature.

2. An array of the provided signatures.

3. The serialized redeemScript.

4. An array of the public keys.

39



2020 Bassam El Khoury Seguias c©

The method declares a signature array and a pubkey array to hold the M signatures
and N public keys. It also declares a delimeter to mark the start of redeemScript in
scriptSig.

It first checks that the length of the input is at least 2 nibbles for otherwise, it would
not accommodate the leading OP 0 that marks the start of a multisignature scriptSig.
It then calls parse Hexstr and compares the extracted byte to OP 0.

In case of equality, the method proceeds to Step 1 to extract the signatures. It runs a
while loop conditional on the value of delimiter. Recall that {redeemScript} is pushed
onto the stack using a PUSHDATA opcode. As a result, after parsing each signature,
the 2 nibble long delimiter is updated and tested against any of the PUSHDATA
opcodes. In case of a match, the while loop exits marking the end of the signature
sequence and the beginning of redeemScript. To avoid an infinite loop (i.e., if the
delimiter never assumes an OP PUSHDATA value) the method additionally checks that
the current value of the index is not out of bound with respect to the string.

40



2020 Bassam El Khoury Seguias c©

Step 2 extracts the redeemScript. The method first checks that the remaining part of
the input is at least 2 nibbles long to contain the delimiter. It then checks if the first
byte is a PUSHDATA opcode before invoking the parse Hexstr method to adjust the
index value. We have seen that with OP PUSHDATAi, i ∈ {1, 2, 4}, the following i
byte(s) contain the length of redeemScript. Hence the redeemScript content starts at
the (i + 1)st byte after the delimiter. The formula used to adjust the index is:

2**(1+int(delimiter,16) - int(OP PUSHDATA1,16))

To justify it, recall that OP PUSHDATA1, OP PUSHDATA2, and OP PUSHDATA4
have respective decimal representations 76, 77, and 78. Now observe that:

• OP PUSHDATA1, yields 2(1+76−76) = 2, moving index by 2 nibbles as expected.

• OP PUSHDATA2, yields 2(1+77−76) = 4, moving index by 4 nibbles as expected.

• OP PUSHDATA4, yields 2(1+78−76) = 8, moving index by 8 nibbles as expected.

Step 3 parses redeemScript to extract the public keys. It extracts the first byte which
should correspond to OP M. It checks that the number of signatures equals M ≤ 15.
Technically this limit applies when all keys are in compressed form (as discussed in
section 4 earlier). Uncompressed keys dictate a lower value. The method then executes
a while loop to extract the keys. After each extraction, it checks that the remaining
string is long enough to accommodate at least 4 nibbles for OP N and
OP CHECKMULTISIG.

Upon exiting the while loop, the method extracts the OP N byte, checks that 1 ≤ M ≤
N ≤ 15 and that the number of public keys is N. Finally it verifies that the last byte
corresponds to OP CHECKMULTISIG.

Next, we build the BTC TX class that allows the instantiation of a Bitcoin transaction
object:

41



2020 Bassam El Khoury Seguias c©

This class has a total of nine methods:

• Method deserialize(tx serialized hex) takes a raw Bitcoin transaction and
extracts all its attributes to be displayed later in a human readable format:

The deserialization procedure introduced in section 2 is applied as follows:

– The parse Elem(tx, length) method extracts the first four bytes of the raw
transaction. These bytes are passed to the change Endienness(x) method
(introduced in section 2) to convert them to big endian. The equivalent
decimal representation is then stored in the version field. Note that the
parse Elem(tx, length) method updates the offset attribute of the Bitcoin
transaction instance, ensuring as such proper parsing of the raw input.

– The inputs count is a variable length field that is first parsed using the

42



2020 Bassam El Khoury Seguias c©

parse Varint(tx) method. The second output of the latter is the desired
count value encoded in little endian. The change Endienness(x) method
subsequently converts it to big endian, and its decimal representation is
stored in variable inputs. Here too, note that the parse Varint(tx)
method correctly updates the offset attribute of the transaction instance in
order to allow proper parsing of the raw input.

– The method then iterates through the inputs, and for each one of them:

∗ Extracts the 32 byte long txid, converts it to big endian and appends the
result to the prev tx id array.

∗ Extracts the 4 byte index of the appropriate output appearing in the
transaction whose txid has just been extracted. The result is converted
to big endian and its decimal value stored in the prev out index array.

∗ Extracts the scriptSig length associated with the current input. Given
its varint nature, the parse Varint(tx) method is invoked and the
desired result converted to big endian. The corresponding decimal value
is stored in the variable scriptSiglen.

∗ Uses scriptSiglen in order to appropriately parse the raw transaction,
extract the scriptSig field, and append it to the scriptSig array.

∗ Extracts the 4 byte nSequence number by invoking the parse Elem(tx,
length) method, converts the result to big endian and append its
decimal representation to the nSequence array.

– The Bitcoin transaction outputs count, like its input counterpart is of type
varint. The parse Varint(tx) method extracts the count encoded in little
endian. The result is converted to big endian and its decimal representation
stored in variable outputs.

– The method then iterates over all outputs and for each one of them:

∗ Extracts the 8 byte long Satoshi value, converts it to big endian and
appends its decimal representation to the value array.

∗ Extracts the scriptPubKey length associated with the current output.
Given its varint nature, the parse Varint(tx) method is invoked and
the desired result converted to big endian. The corresponding decimal
value is then stored in the variable scriptPubKeylen.

∗ Uses scriptPubKeylen in order to appropriately parse the raw Bitcoin
transaction, extract the scriptPubKey field, and append it to the
scriptPubKey array.

– The method finally extracts the 4 byte nLocktime value, converts it to big

43



2020 Bassam El Khoury Seguias c©

endian and stores its decimal representation.

– Since both methods parse Elem(tx, length) and parse Varint(tx) adjust
the offset attribute of the transaction instance, successful deserialization
should end with an offset value equal to the length of the raw transaction.

• Method serialize() acts on a Bitcoin transaction instance and outputs its raw
hexadecimal representation after properly serializing its various attributes. The
logical flow of the method is straightforward since it performs the reverse
operations of the deserialize() method. Note that it makes various calls to the
following two methods introduced earlier in section 2:

– Method int2bytes(a,b) that converts integer a into its byte (base 256)
representation such that the length of the byte representation is b bytes.

– Method encode Varint(value) that converts an integer value to its varint
hexadecimal format expressed in little endian.

• get Prev Tx Deserialized() acts on a Bitcoin transaction instance and returns

44



2020 Bassam El Khoury Seguias c©

an array prev tx of Bitcoin transaction objects. Each object is a deserialized
version of a relevant previous Bitcoin transaction that has one of its outputs
feeding into the current transaction.

For each input in the current Bitcoin transaction, a new Bitcoin transaction
object is instantiated. The get Serialized Tx(txid, net) method is then
invoked on the txid referenced by the current input and the result stored in
prev tx raw. The latter is then fed to the deserialize() method and the
outcome appended to the prev tx array.

• get Prev Out Type() acts on a Bitcoin transaction instance and returns an
array prev out type of string elements. Each string element corresponds to the
type of transaction output (i.e., P2PKH, P2SH-Not MS, P2SH-MS) being
unlocked by the current input.

It starts by calling the get Prev Tx Deserialized() method and storing the
resulting array in prev tx. It then retrieves the scriptPubKey of the appropriate
output in a previous Bitcoin transaction that the current input’s scriptSig is
meant to unlock. This is performed by noticing that input i of the current Bitcoin
transaction is associated with previous transaction prev tx[i] and that the index
of the relevant output is prev out index[i]. As a result, the relevant locking
script prev scriptPubKey can be retrieved as follows:

prev tx[i].scriptPubKey[self.prev out index[i]]]

The latter is then passed to method scriptPubKey Type(hexstr) which
returns a string indicating whether the scriptPubKey is of type ”P2PKH”,

45



2020 Bassam El Khoury Seguias c©

”P2SH”, or ”Other type”. If it is ”P2SH”, parse ScriptSig P2MS(hexstr) gets
invoked and the first of its outputs (which can either be ”-MS” or ”-Not MS”) is
appended to prev out type[i].

• decomp ScriptSig() acts on a Bitcoin transaction instance and returns an array
of dictionaries decomp scriptSig. The method decomposes the scriptSig of each
input of a Bitcoin transaction into its components including signatures, public
keys, and redeemScript if applicable.

It starts by invoking get Prev Out Type() and then iterates over the Bitcoin
transaction’s inputs. Depending on the type of each input, it performs the
following:

– Invokes the parse ScriptSig P2PKH(hexstr) method on the input’s
scriptSig attribute in case it corresponds to a P2PKH locking script. It
then stores the relevant signature and public key in a dictionary and appends
it to the decomp scriptSig array.

– Invokes the parse ScriptSig P2MS(hexstr) method on the input’s
scriptSig attribute in case it corresponds to a P2SH-MS locking script. It
then stores the relevant signature(s), redeemScript and public key(s) in a
dictionary and appends it to the decomp scriptSig array.

– Otherwise, the method appends an empty dictionary to the
decomp scriptSig array.

• display() shows the attributes of the Bitcoin transaction in human readable form.

46



2020 Bassam El Khoury Seguias c©

The following three methods will be used in section 7 to construct the appropriate
message to be signed based on the sighash value:

• reset Inputs() acts on a Bitcoin transaction instance, sets the input counter to
0 and all other relevant input attributes to empty arrays.

• reset Outputs() acts on a Bitcoin transaction instance, sets the output
counter to 0 and all other relevant output attributes to empty arrays.

• set ScriptSig(index, hex str) acts on a Bitcoin transaction instance and sets

47



2020 Bassam El Khoury Seguias c©

the scriptSig attribute of input #index to hex str.

To display the deserialized form of a Bitcoin transaction specified by its txid, we can
proceed as follows:

For example, when applied to the Bitcoin transaction with txid:

0x039b145453739a8d58198eb9caa63eb9db9a8bb08cbd0977237e05082561a4a5

We get the following:

48



2020 Bassam El Khoury Seguias c©

49



2020 Bassam El Khoury Seguias c©

This is a transaction with three outputs and three inputs, each of which unlocks a
scriptPubKey of type P2SH-MS.

• The version field consists of the first 4 bytes 0x01000000 which when transformed
to big endian yield 0x00000001 or 1 in decimal.

• The subsequent byte(s) correspond(s) to the input counter of type varint. In this
case, the first byte is 0x03 which is less than 0xfd. As a result, varint decoding
rules dictate that the input count is 0x03 i.e., 3 in decimal.

• The next 32 bytes correspond to the txid of the first previous transaction
referenced by the current Bitcoin transaction:

0xf5d37b475141216a2682d7b1ca2339ddfce85bde721568498cb0db4665f0ed19

50



2020 Bassam El Khoury Seguias c©

In big endian, it becomes:

0x19edf06546dbb08c49681572de5be8fcdd3923cab1d782266a21415
1477bd3f5

• The next 4 bytes correspond to the index of the first previous output which is
0x01000000 in little endian or 0x00000001 in big endian. Recalling that indexing
starts at 0, this particular index corresponds to the second output of the previous
Bitcoin transaction just referenced. By retrieving this output, one can see that its
serialized scriptPubKey is:

0xa914704bc33d78d213a430a982c5a4c1fd8a87959b5b87

When deserialized, the scriptPubKey becomes:

OP HASH160 OP PUSHBYTES 20
704bc33d78d213a430a982c5a4c1fd8a87959b5b OP EQUAL

It is of type P2SH with a redeemScript hash given by:

0x704bc33d78d213a430a982c5a4c1fd8a87959b5b

• The subsequent byte(s) correspond(s) to the length of the scriptSig associated
with the first input. It is of type varint with first byte 0xfc. Since it is less than
0xfd, varint decoding rules dictate that the length of scriptSig is equal to 0xfc i.e.,
252 bytes.

• The following 252 bytes correspond to the actual scriptSig associated with input
#1. The scriptSig is meant to unlock the aforementioned P2SH output. In this
case, it is a 2-of-3 P2SH multisignature. Recall from section 4 that this particular
scriptSig must begin with OP O, followed by two signatures and then the
serialized version of the redeemScript:

– The first byte of the scriptSig is 0x00 which corresponds to OP 0.

– The following byte is 0x47 (i.e., OP PUSHBYTES 71), indicating that the
first signature to be pushed onto the stack is 71 bytes long. It is given by:

0x30440220568e2dce1f11b2db59de929fd1fead6b67585ea309fb6204f245
1a4e19b4cc1702200ab5c60127dde33532718fef6a7773625b0d4a03b44

1eee75e2f80de6e18ee6a01

– The following byte is also 0x47 (i.e., OP PUSHBYTES 71). The second
signature is hence 71 bytes long and given by:

0x30440220408a2599e5daace10d148bbd1771c286b7adc60d9d5e1302ba
bb9eb7c76ff2c002204bbc3d9143cc98a74bfa2736d42e2d209926fb07fc

65074a3e62e21f327362f501

– The subsequent byte is a PUSHDATA opcode that specifies how many bytes

51



2020 Bassam El Khoury Seguias c©

to allocate to the length of the redeemScript. In this case, it is 0x4c (i.e.,
OP PUSHDATA1). As a result, the byte following it will be the length of the
redeemScript.

– The next byte is 0x69 indicating a redeemscript length of 105 bytes.

– The following 105 bytes are the serialized redeemScript associated with this
first input:

0x522103ea74dfdbc1aa1689c00b5319bb8ccbd3074cded17efc4e5046a0be
026a5736ce210340614f30da78f213fbe4f0eab3efd187d57f8d2d6e0880
ff026bfe5d65fde7c62103583b06c1f8510f4a8da8c8babb867676722b32

3787d5c57974cfe31c8cf420df53ae

In deserialized form it becomes:

OP 2 OP PUSHBYTES 33
03ea74dfdbc1aa1689c00b5319bb8ccbd3074cded17efc4e5046a0be026a5736ce

OP PUSHBYTES 33
0340614f30da78f213fbe4f0eab3efd187d57f8d2d6e0880ff026bfe5d65fde7c6

OP PUSHBYTES 33
03583b06c1f8510f4a8da8c8babb867676722b323787d5c57974cfe31c8cf420df

OP 3 OP CHECKMULTISIG

This is a redeemScript of type P2MS with 2 of 3 multisignatures. Note that
the RIPEMD160 of the serialized redeemScript is equal to the hash
appearing in the aforementioned scriptPubKey:

0x704bc33d78d213a430a982c5a4c1fd8a87959b5b

• The subsequent 8 bytes correspond to the sequence number associated with
input #1 and given by 0xffffffff in little endian or 4,294,967,295 in decimal.
Recall from section 2 that this means that none of RLT, RBF or nLockTime are
enabled.

• Input #2 is deserialized in a similar way to Input #1 and unlocks a 2-of-3
P2SH-MS scriptPubKey. Its corresponding portion in the raw transaction is:

0x320ccdd3bded6eb3bb317a437fc6f611254da70a2fc1fb8b9a19bec1bd67bf9a010000
00fc0047304402201640277f58817c09db76532f2af0f430e5bcb25b1b3d94dc9dcb82
3c73889e81022060cd7589983c8cf84958b366a2cbdf09b0343b630ff0f133266e2be8
7a2bc50e014730440220434bfb409312a376efac9f81e9ab99ba1a5c4274998eee6346
35971193c6f6a802200bf63ba78274a666df7be21cc96bf1fd813b85bf1fc61774cc7822
743507c8f7014c69522103b323ad56963c69076ee2479ed92e5b092c579c9bae59bca5
64386e642347bf9c21023ef9051578518d3b2576637c958021121d2ea6af046bd0f64c5
d63b020ff6a9b2103c33a9ba944fd4636704e56d7cc0301978c6736facebbf90e0b8e69
2dc60f9d5b53aefffffffff

• Input #3’s deserialization follows the same process and unlocks a 2-of-3
P2SH-MS scriptPubKey. Its corresponding portion in the raw transaction is:

52



2020 Bassam El Khoury Seguias c©

0x1c74bf4636506268bc3b38476dc126c9190c73c9bee5332bf47a7d413b7631501000000
fdfd00004830450221009f7d7c44eab7bfd3acd874f1c893152089cb0f9937798b3b6fdcc
47521cc5434022044249ee3516f3108af9f6dfa7be0275f1abfa3531094ff80d4af8d20d064
3761014730440220355e92861b63fcf58c8e6028075d1559ffbd74d154ae90a11aea56e2e
3e05958022075965c83ced37bb942644772f2ddea466aeddaf4990620a441cce884b781c
752014c69522102aba4b3bfdea7e4b709edcc56e609845d7eeba9ffb0a813e9edd5b8729
c57804f21033ad2088afe60726c746dac2f2dcfd747a47cd685122ca06635af860c00f690e
321025d5e665937e296a137c01afedd9a0c76e8e0f3f6ac3466a260d5d8e50baadb9c53ae
ffffffff

Note however that the length of scriptSig is given by the varint sequence 0xfdfd00
(highlighted in bold). The first byte 0xfd indicates that the following 2 bytes are
the little-endian encoded length of scriptSig. These are 0xfd00, i.e., 253.

• The next byte(s) correspond(s) to the output counter which is of type varint. The
first byte is 0x03 which is less than 0xfd. As a result, varint decoding rules
dictate that the output count is 0x03 i.e., 3.

• The subsequent 8 bytes correspond to Output #1’s value encoded in little
endian and given by 0x50185b0000000000. This corresponds to Satoshi 597,0000.

• The next byte(s) correspond(s) to the length of Output #1’s scriptPubKey.
The first byte is 0x19 which is less than 0xfd. As a result, varint decoding rules
dictate that the length of this scriptPubKey is 0x19 i.e., 25 bytes.

• The next 25 bytes are Output #1’s scriptPubKey in serialized form:

0x76a914410d9e4a1cf587d1707b402a986812780d16b62088ac

When deserialized, this yields the following P2PKH scriptPubKey:

OP DUP OP HASH160 OP PUSHBYTES 20
410d9e4a1cf587d1707b402a986812780d16b620 OP EQUALVERIFY

OP CHECKSIG

• The subsequent 8 bytes correspond to Output #2’s value encoded in little
endian and given by 0x6f5edd0400000000. This corresponds to Satoshi
81,616,495.

• The next byte 0x17 is the varint length of the scriptPubKey.

• The following 23 bytes are Output #2’s scriptPubKey in serialized form:

0xa91414328fd3a99e5666514cd5167d2cc4ebed15c1a087

When deserialized, this yields the following P2SH scriptPubKey:

OP HASH160 OP PUSHBYTES 20 14328fd3a99e5666514cd5167d2cc4ebed15c1a0
OP EQUAL

53



2020 Bassam El Khoury Seguias c©

• Output #3 is deserialized in a similar way to Output #2. It imposes a P2SH
locking condition and its corresponding portion in the raw transaction is:

0xd13e1c070000000017a91486744da8f363950f7c90378bdb1cc54336d1588687

• The last 8 bytes correspond to the nLockTime value expressed in little endian as
0x00000000 i.e., 0 in decimal.

6 Coinbase and data inscription Bitcoin transaction

Coinbase transaction : This is a special type of Bitcoin transactions. Its creation is
tied to the successful mining of a new block and its purpose is to unlock new bitcoins to
the miners. These bitcoins do not result from a typical transfer of spending control from
a payer to a payee. Instead, they follow a well-defined issuance schedule that limits all
bitcoins that can ever exist to a hard cap of 21 million units expected to be reached in
the year 2140. It is this finite maximal amount that confers upon Bitcoin its scarcity
and makes it the epitome of sound money as defined by Austrian school economists.

Every four years, the issuance scheme halves the amount of new bitcoins per block, also
known as the block subsidy. The next halving event will happen in May 2020 when
the block subsidy will be reduced from BTC 12.5 to 6.25.

The anatomy of a coinbase transaction is not that different from that of a common
Bitcoin transaction. The difference consists of the following:

• The coinbase transaction must have exactly one input.

• The txid corresponding to that input must be the all zero 32 byte long string:

0x0000000000000000000000000000000000000000000000000000000000000000

• The 4 byte previous index field must be set to the maximum value of 0xffffffff.

• The scriptSig associated with this single input can be any arbitrary string. The
rationale is that this scriptSig is not meant to unlock any previous output.
However, there are two constraints on its structure:

1. Its length must not be less than 2 bytes and not more than 100 bytes.

2. It must start with a push of the height of the block associated with the
coinbase transaction. This constraint was introduced in BIP 34 [4] and we
will explain its logic later in this section.

• The sum of the values of the coinbase transaction’s outputs must not surpass the
sum of the appropriate block subsidy and the fees of all non-coinbase transactions
included in the relevant block and owed to the miner. This upper-bound sum is
also known as the total miner’s reward.

54



2020 Bassam El Khoury Seguias c©

• The output of any coinbase transaction has a maturation period of 101 block
confirmations during which it cannot be spent. To justify it, recall that blockchain
forks occur regularly on the Bitcoin network as explained in the chapter entitled
”To fork or not to fork: the blockchain’s propensity to converge”. If a block
becomes orphaned as a result of a fork, any Bitcoin transaction that unlocks
UTXOs tied to that block’s coinbase transaction becomes obsolete. The
maturation constraint aims to render the probability of such an occurrence
negligibly small.

As an example, consider block #400,000’s coinbase transaction with txid:

0xa8d0c0184dde994a09ec054286f1ce581bebf46446a512166eae7628734ea0a5

Its raw representation is given by:

0x01000000010000000000000000000000000000000000000000000000000000000000000000
ffffffff3f03801a060004cc2acf560433c30f37085d4a39ad543b0c000a425720537570706f7274
20384d200a666973686572206a696e78696e092f425720506f6f6c2fffffffff012fd8ff9600000000
1976a914721afdf638d570285d02d3076d8be6a03ee0794d88ac00000000

• The version field is 0x01000000 expressed in little endian notation. This
corresponds to the decimal value 1.

• The following byte is the input counter which for a coinbase transaction must
necessarily be set to 1. As expected, this byte is 0x01.

• The next 32 bytes correspond to the only previous txid associated with this
coinbase transaction. This is set to the 32 byte zero string:

0x000000000000000000000000000000000000000000000000000000
0000000000

• The next 4 bytes correspond to the previous output index which for a coinbase
transaction is set to 0xffffffff.

• The subsequent byte(s) correspond(s) to the length of the scriptSig associated
with the input. It is of type varint with first byte 0x3f. Since it is less than 0xfd,
varint decoding rules dictate that the length of scriptSig is 0x3f i.e., 63 bytes.

• The following 63 bytes contain the actual scriptSig:

– Recall that the activation of BIP 34 mandated that the scriptSig of a
coinbase transaction starts with the block height of its corresponding block.
More specifically, it must start with a push opcode of a number of bytes that
contain the height of the relevant block. In this case, the first byte is 0x03
indicating that the next 3 bytes will hold the block height value.

– The following 3 bytes contain the block height encoded in little endian as
0x801a06 i.e., 400,000 in decimal.

55



2020 Bassam El Khoury Seguias c©

– The remaining 59 bytes (i.e., 63 - 1 - 3) contain the arbitrary string of the
coinbase transaction’s scriptSig. In this case it is:

0x0004cc2acf560433c30f37085d4a39ad543b0c000a425720537570706f
727420384d200a666973686572206a696e78696e092f425720506f6f6c2f

• The following 8 bytes correspond to the sequence number associated with the
input and given by 0xffffffff in little endian or 4,294,967,295 in decimal.

• The next byte(s) correspond(s) to the output counter of type varint. In this case,
the first byte is 0x01 which is less than 0xfd. As a result, varint decoding rules
show that there is only 1 output.

• The subsequent 8 bytes correspond to the output’s value encoded in little
endian and given by 0x2fd8ff9600000000 i.e., Satoshi 2,533,349,423.

• The following byte(s) correspond(s) to the the length of the output’s locking
script. It is of type varint with first byte equal to 0x19. Since this value is less
than 0xfd, varint decoding rules imply a scriptPubKey length of 25 bytes.

• The next 25 bytes are the output’s scriptPubKey in serialized form:

0x76a914721afdf638d570285d02d3076d8be6a03ee0794d88ac

When deserialized, this yields the following P2PKH scriptPubKey:

OP DUP OP HASH160 OP PUSHBYTES 20
721afdf638d570285d02d3076d8be6a03ee0794d OP EQUALVERIFY

OP CHECKSIG

• The last 8 bytes correspond to the nLockTime value expressed in little endian as
0x00000000 i.e., 0 in decimal.

Prior to BIP 34’s scriptSig block height constraint, it was possible for miners to create
two identical coinbase transactions (i.e., with the same txid) corresponding to two
distinct blocks. All that was required was to ensure that the two transactions had
matching scriptSig and matching output attributes (i.e., amount and scriptPubKey).
This was the case for e.g., blocks #91812 and #91842 that shared the coinbase
transaction with txid:

0xd5d27987d2a3dfc724e359870c6644b40e497bdc0589a033220fe15429d88599

Its raw representations is given by:

0x0100000001000000000000000000000000000000000000000000000000000000000000
0000ffffffff060456720e1b00ffffffff0100f2052a010000004341046896ecfc449cb8560594e
b7f413f199deb9b4e5d947a142e7dc7d2de0b811b8e204833ea2a2fd9d4c7b153a8ca76
61d0a0b7fc981df1f42f55d64b26b3da1e9cac00000000

56



2020 Bassam El Khoury Seguias c©

By deserializing it, one can see that the scriptSig is 6 bytes long. Moreover, there is a
single output whose value is 0x00f2052a01000000 in little endian representation or BTC
50 in decimal. Furthermore, the scriptPubKey is of type P2PK with recipient public
key given by:

0x046896ecfc449cb8560594eb7f413f199deb9b4e5d947a142e7dc7d2de0b811b8e2048
33ea2a2fd9d4c7b153a8ca7661d0a0b7fc981df1f42f55d64b26b3da1e9c

The problem with having two Bitcoin transactions share the same txid is that once a
UTXO in one of them gets unlocked, its identical instance in the other transaction
becomes obsolete. For a coinbase transaction where each UTXO encapsulates newly
mined bitcoins, this would lead to the permanent loss of bitcoins. Given that there is
only one coinbase transaction per block, adding the block height to its serialized
representation ensures the uniqueness of the raw content and as a result, that of its txid.

The rather arbitrary nature of the scriptSig field paved the way to inscribing various
messages on the blockchain by encoding them in the coinbase transaction’s scriptSig.
As an example, consider the first ever coinbase transaction associated with the genesis
block. Its txid is:

0x4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b

And in raw form, it is given by:

0x0100000001000000000000000000000000000000000000000000000000000000000000
0000ffffffff4d04ffff001d0104455468652054696d65732030332f4a616e2f323030392043
68616e63656c6c6f72206f6e206272696e6b206f66207365636f6e64206261696c6f7574
20666f722062616e6b73ffffffff0100f2052a01000000434104678afdb0fe5548271967f1a6
7130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112de
5c384df7ba0b8d578a4c702b6bf11d5fac00000000

The scriptSig is 77 bytes long (hexadecimal representation of the scriptSig’s length byte
is highlighted in bold in the raw transaction above). These bytes are:

0x04ffff001d0104455468652054696d65732030332f4a616e2f32303039204368616e63
656c6c6f72206f6e206272696e6b206f66207365636f6e64206261696c6f757420666f72

2062616e6b73

When converted to ASCII characters, one gets the following famous message inscribed
by Satoshi Nakamoto:

ÿÿ EThe Times 03/Jan/2009 Chancellor on the brink of second bailout for banks

OP RETURN transactions : An alternative method of writing data to the
Bitcoin’s blockchain is to use the OP RETURN opcode with decimal representation
106 (0x6a in hex). Data up to 80 bytes could be stored on the blockchain by adding an

57



2020 Bassam El Khoury Seguias c©

output to a Bitcoin transaction with a locking script of the form:

OP RETURN < Data >

This scriptPubKey is commonly referred to as NULL DATA. In addition to the
80-byte data size constraint, OP RETURN introduces an architectural constraint that
limits the number of NULL DATA type outputs to only one per Bitcoin transaction.

The main advantage of OP RETURN is that the NULL DATA scriptPubKey is
provably unspendable. In other words, it is impossible to unlock it. This is due to the
operational nature of OP RETURN which immediately terminates the execution of the
script and marks it as invalid. As a result, NULL DATA type outputs are excluded
from the UTXO set, reducing as such the burden on the Bitcoin network.

To illustrate the mechanism of OP RETURN, consider the Bitcoin transaction with
txid [3]:

0xafeb330a84dc62571491132242787f4dadac48dd8d1b3affdfdbb3529db15cb9

58



2020 Bassam El Khoury Seguias c©

The first output has a value of Satoshi 0 and a scriptPubKey given by:

0x6a0e436861696e206973206261636b21

The first byte 0x6a corresponds to OP RETURN while the second 0x0e corresponds to
OP PUSHBYTES 14. The following 14 bytes 0x436861696e206973206261636b21
correspond to the actual data committed to the blockchain. When converted from
hexadecimal to UTF8, the result becomes ”Chain is back!”.

It is worth noting that the usage of OP RETURN has been increasing dramatically
recently. The graph below shows the number of outputs associated with an
OP RETURN scriptPubKey from 2009 to 2019.

In [7], the authors analyze the usage of OP RETURN in Bitcoin transactions up to
block 453, 200 (i.e., until the 15th of February 2017) including an identification of the
various protocols and classification of their relevant application domains. The usage of
OP RETURN has been a point of contention in the Bitcoin community. Some perceive
it as an unwelcome diversion of the Bitcoin network away from its objective of serving
as a currency transfer infrastructure. Others counter by stating that OP RETURN still
requires adequate payment to miners in order to inscribe data on the blockchain.

59



2020 Bassam El Khoury Seguias c©

7 Sighash types and Bitcoin transaction signatures

In section 4, we described a subset of all possible spending conditions that can be
imposed on an output of a Bitcoin transaction. Such conditions commonly include the
production of an appropriate signature. Recall that signatures are applied to specific
messages and generated using an appropriate private key (refer to the post entitled
”Bitcoin Elliptic Curve Digital Signature Algorithm (ECDSA)”). Consequently, it
becomes crucial to specify what message must be considered to unlock a given UTXO.

It turns out that the formation of such messages is not monolithic. Instead, it depends
on what elements of the Bitcoin transaction that counts the UTXO as one of its inputs
are selected for inclusion. For example, one may decide to include information about
every single input. Alternatively, one may choose to limit such input information to
that associated with the specific UTXO. Similarly, one may decide to include all output
information or instead, limit the inclusion to a subset of such outputs.

One must not equate this flexibility with complete freedom in deciding what to include
or exclude. As a matter of fact, message formation options are limited to a set of six
possibilities. In order to verify the validity of a signature, nodes need to know which
model was used. To that effect, a particular byte known as sighash is appended to the
end of every UTXO signature. The set of possible sighash bytes comprises:

• SIGHASH ALL (0x01 in hex)

• SIGHASH NONE (0x02 in hex)

• SIGHASH SINGLE (0x03 in hex)

• SIGHASH ALL ANYONECANPAY (0x81 in hex)

• SIGHASH NONE ANYONECANPAY (0x82 in hex)

• SIGHASH SINGLE ANYONECANPAY (0x83 in hex)

The objective of this section is to discuss the details of these options. In particular, we
illustrate how to create UTXO-specific messages based on a sighash type and use these
procedures to generate signatures for a testnet Bitcoin transaction. In addition, we
write a python code (applicable only to a pre-segwit Bitcoin transaction with UTXOs of
type P2PKH or P2SH-MS) to build UTXO-specific messages and verify their signatures.

Throughout this section, we consider a generic Bitcoin transaction with these attributes:

• A version field specified by nVersion.

• A total of vin count inputs, where the ith input corresponds to the UTXO
located at index i of a previous transaction with txid i.

• A total of vout count outputs, where the kth output (1 ≤ k ≤ vout count)
encapsulates an amount of Satoshis amount k subjected to scriptPubKey k.

• A locktime value specified by nLockTime.

Without loss of generality, we limit ourselves to producing relevant messages associated
with the ith UTXO of such a Bitcoin transaction.

60



2020 Bassam El Khoury Seguias c©

The case of a SIGHASH ALL byte: This is the most common of all types. All
the elements of the Bitcoin transaction must be part of the message. As a result, a
sender requires that her UTXO be spent alongside a pre-defined set of inputs and
destined to a pre-defined set of recipients with pre-defined amounts.

However, some of the components of the Bitcoin transaction must be modified prior to
inclusion. In particular, the scriptSig fields of all the inputs will have to be altered.
This is because scriptSig s (1 ≤ s ≤ vin count) would hold the signature associated
with the sth UTXO and it would be logically challenging to expect these fields to know
it in advance. More specifically, the modification is conducted as follows:

1. Retrieve the previous transaction containing the ith UTXO as an output.

2. Retrieve the index of this UTXO in the previous transaction.

3. If UTXO is of type P2SH, replace scriptSig i with P2SH’s redeemScript. Else,
replace it with scriptPubKey i. Update length of scriptSig i. If scriptPubKey i
contains OP CODESEPARATOR (legacy from an older Bitcoin client version),
further modifications would be needed. The scriptSig of a P2PKH and
redeemScript of a P2SH-MS UTXO are OP CODESEPARATOR free.

4. Set scriptSig s to empty string and its length to 0 (1 ≤ s ≤ vin count, s 6= i).

The modified content is subsequently serialized as outlined in section 2. The sighash
byte 0x01 is extended to the 4 byte sequence 0x01000000 and appended to the serialized
content. The desired message is formed by taking a double SHA256 of the outcome.

61



2020 Bassam El Khoury Seguias c©

The case of a SIGHASH SINGLE byte: All inputs are included but any output
with index > i is excluded (ideally, there should be at least as many outputs as inputs).
Any output with index < i will have its amount set to -1 (i.e., 0xffffffffffffffff in hex) and
its scriptPubKey to the empty string. De facto, a sender requires that his UTXO be
spent alongside a pre-defined set of inputs as long as a given amount is sent to a specific
recipient without caring about others. The process is as follows:

1. Retrieve the previous transaction containing the ith UTXO as an output.

2. Retrieve the index of this UTXO in the previous transaction.

3. If UTXO is of type P2SH, replace scriptSig i with P2SH’s redeemScript. Else,
replace it with scriptPubKey i. Update length of scriptSig i. If scriptPubKey i
contains OP CODESEPARATOR (legacy from an older Bitcoin client version),
further modifications would be needed. The scriptSig of a P2PKH and
redeemScript of a P2SH-MS UTXO are OP CODESEPARATOR free.

4. Set scriptSig s to an empty string, length of scriptSig s to 0 and
nSequence s to 0 (1 ≤ s ≤ vin count, s 6= i)

5. Update vout count to the value i.

6. Change amount s to -1, replace scriptPubKey s with an empty string and set
length of scriptPubKey s to 0 (1 ≤ s < i).

7. Remove all transaction outputs with index greater than i.

62



2020 Bassam El Khoury Seguias c©

The modified content is subsequently serialized as outlined in section 2. The sighash
byte 0x03 is extended to the 4 byte sequence 0x03000000 and appended to the serialized
content. The desired message is formed by taking a double SHA256 of the outcome.

The case of a SIGHASH NONE byte: All inputs are included but none of the
outputs are. In other words, a sender requires that her UTXO be spent alongside a
pre-defined set of inputs without caring about who receives it.

This type of signature is deemed insecure if used in a Bitcoin transaction with a single
input because anyone could snatch it. However, it may be useful in the context of a
Bitcoin transaction with many inputs. For example, consider a scenario where one of
the inputs corresponds to an active investor. All the other inputs are associated with
passive investors who agree to commit their funds as long as all of them participate.
Moreover, they do not need to know their funds’ final destination in advance because
the investment will be determined at a later stage by their active colleague.
Consequently, the passive subset sign their UTXOs with SIGHASH NONE and trust
that their active colleague will sign his with SIGHASH ALL upon sealing his portfolio.

The process is straightforward with all transaction outputs removed. More specifically:

1. Retrieve the previous transaction containing the ith UTXO as an output.

2. Retrieve the index of this UTXO in the previous transaction.

3. If UTXO is of type P2SH, replace scriptSig i with P2SH’s redeemScript. Else,
replace it with scriptPubKey i. Update length of scriptSig i. If scriptPubKey i
contains OP CODESEPARATOR (legacy from an older Bitcoin client version),
further modifications would be needed. The scriptSig of a P2PKH and
redeemScript of a P2SH-MS UTXO are OP CODESEPARATOR free.

4. Set scriptSig s to an empty string, length of scriptSig s to 0 and
nSequence s to 0 (1 ≤ s ≤ vin count, s 6= i)

5. Set vout count to 0.

6. Remove all transaction outputs.

63



2020 Bassam El Khoury Seguias c©

The modified content is subsequently serialized as outlined in section 2. The sighash
byte 0x02 is extended to the 4 byte sequence 0x02000000 and appended to the serialized
content. The desired message is formed by taking a double SHA256 of the outcome.

All the previous sighash bytes mandated the inclusion of all inputs in order to form the
message. It turns out that the sender could alternatively limit the subset of inputs to a
singleton with the one corresponding to the relevant UTXO. This flexibility introduces
three more sighash bytes as described below.

The case of a SIGHASH ALL ANYONECANPAY byte: This is similar to
SIGHASH ALL in that all outputs are included in the message. It however differs from
it by limiting its inputs to input i. In this case, a sender requires that her UTXO be
part of a Bitcoin transaction with a pre-defined set of recipients and pre-defined
amounts destined to each of one of them. However, she does not care about who else
may be funding the Bitcoin transaction. This could be useful for crowdfunding
campaigns where recipients are known in advance but funders do not necessarily care
about who else may be contributing.

The message formation process mimics that of SIGHASH ALL with the additional
steps of setting vin count to 1 and removing all inputs other than input i. More
specifically, the modification is conducted as follows:

1. Retrieve the previous transaction containing the ith UTXO as an output.

64



2020 Bassam El Khoury Seguias c©

2. Retrieve the index of this UTXO in the previous transaction.

3. If UTXO is of type P2SH, replace scriptSig i with P2SH’s redeemScript. Else,
replace it with scriptPubKey i. Update length of scriptSig i. If scriptPubKey i
contains OP CODESEPARATOR (legacy from an older Bitcoin client version),
further modifications would be needed. The scriptSig of a P2PKH and
redeemScript of a P2SH-MS UTXO are OP CODESEPARATOR free.

4. Set vin count to 1.

5. Remove all inputs except for input i.

The modified content is subsequently serialized as outlined in section 2. The sighash
byte 0x81 is extended to the 4 byte sequence 0x81000000 and appended to the serialized
content. The desired message is formed by taking a double SHA256 of the outcome.

The case of a SIGHASH SINGLE ANYONECANPAY byte: This is similar to
SIGHASH SINGLE but limits its input set to the singleton with input i. In this regime,
a sender remains indifferent vis-a-vis other senders or recipients as long as a pre-defined
amount gets sent to one specific recipient. The modification is conducted as follows:

1. Retrieve the previous transaction containing the ith UTXO as an output.

2. Retrieve the index of this UTXO in the previous transaction.

65



2020 Bassam El Khoury Seguias c©

3. If UTXO is of type P2SH, replace scriptSig i with P2SH’s redeemScript. Else,
replace it with scriptPubKey i. Update length of scriptSig i. If scriptPubKey i
contains OP CODESEPARATOR (legacy from an older Bitcoin client version),
further modifications would be needed. The scriptSig of a P2PKH and
redeemScript of a P2SH-MS UTXO are OP CODESEPARATOR free.

4. Update vout count to the value i.

5. Change amount s to -1, replace scriptPubKey s with an empty string and set
length of scriptPubKey s to 0 (1 ≤ s < i).

6. Remove all transaction outputs with index greater than i.

7. Set vin count to 1.

8. Remove all inputs except for input i.

The modified content is subsequently serialized as outlined in section 2. The sighash
byte 0x83 is extended to the 4 byte sequence 0x83000000 and appended to the serialized
content. The desired message is formed by taking a double SHA256 of the outcome.

The case of a SIGHASH NONE ANYONECANPAY byte: This is similar to
SIGHASH NONE but limits its input set to the singleton with input i. In this case, a
sender remains indifferent vis-a-vis other senders or recipients.

66



2020 Bassam El Khoury Seguias c©

It is not recommended to use this type of signature on a Bitcoin transaction with a
single input because anyone could claim it. However, it may be useful in the context of
a multi-input Bitcoin transaction. For example, consider a scenario similar to the one
described earlier for SIGHASH NONE. The difference now is that passive investors do
not care about who else may be funding the investment. Recall that the active investor
is later expected to sign his UTXO with a SIGHASH ALL byte. The modification is
conducted as follows:

1. Retrieve the previous transaction containing the ith UTXO as an output.

2. Retrieve the index of this UTXO in the previous transaction.

3. If UTXO is of type P2SH, replace scriptSig i with P2SH’s redeemScript. Else,
replace it with scriptPubKey i. Update length of scriptSig i. If scriptPubKey i
contains OP CODESEPARATOR (legacy from an older Bitcoin client version),
further modifications would be needed. The scriptSig of a P2PKH and
redeemScript of a P2SH-MS UTXO are OP CODESEPARATOR free.

4. Set vout count to 0.

5. Remove all transaction outputs.

6. Set vin count to 1.

7. Remove all inputs except for input i.

67



2020 Bassam El Khoury Seguias c©

The modified content is subsequently serialized as outlined in section 2. The sighash
byte 0x82 is extended to the 4 byte sequence 0x82000000 and appended to the serialized
content. The desired message is formed by taking a double SHA256 of the outcome.

Illustrative example of signing a new Bitcoin transaction: We now use the
aforementioned procedures to sign the inputs of a testnet Bitcoin transaction using
different sighash types. The Bitcoin transaction will have four inputs and two outputs.
All four inputs correspond to UTXOs of type P2PKH. The first input’s UTXO will be
signed with SIGHASH ALL, the second with SIGHASH SINGLE, the third with
SIGHASH NONE and the fourth with SIGHASH ALL ANYONECANPAY.

• Details of the first UTXO:

– This UTXO corresponds to the first output of the testnet Bitcoin transaction
whose txid is:

0x663325d63f76fec38b153718dd1ede1bd150c76c51214f0fa0b386d59fb5bc7b

– Its owner’s private and public keys are respectively:

0xae53c7e504f8e281e9b45ae3f71f837296196d02182c8d01fa924bd857c97de9

0x0427a5ebe8b8af49e2afd490eb5ce05469b535bb433ea0bd176eee4977252e8a
05961a9f6a58c16dcd2be136c9fe73bc35689673bd8e5e3cb21a68c1e7367fc7e3

– Its nSequence number is set to 0xffffffff.

• Details of the second UTXO:

– This UTXO corresponds to the first output of the testnet Bitcoin transaction
whose txid is:

0x0f704d306d84c4626f76faead68b40aff5bd005f57128e13ce822bf7f549b718

– Its owner has the same private and public key as the first UTXO

– Its nSequence number is set to 0xffffffff.

• Details of the third UTXO:

– This UTXO corresponds to the first output of the testnet Bitcoin transaction
whose txid is:

0x88b0a5cba88aa22d271d1de3157d4bc2683bfc6b9feecc0bee800cc1926cae17

– Its owner’s private and public keys are respectively:

68



2020 Bassam El Khoury Seguias c©

0x82ab03119c793609e9e2b5a477647d02c97a14f2004e53d1c89fc6ec1b34280a

0x043391bcbfdcc5f9a3c9bcb9b1b4f3296f55ca46c6207d6c3da8eba4e2ec8b19
96c445397a1ac33f610669c307e5853980d7883b036f9865d5cbbdb7564ed25894

– Its nSequence number is set to 0xffffffff.

• Details of the fourth UTXO:

– This UTXO corresponds to the first output of the testnet Bitcoin transaction
whose txid is:

0x4fd95f9ef04a4a6fb21fa5618513d95f905e2c676973fbb41d074ac53f9a7e89

– Its owner’s private and public keys are respectively:

0xed79ab140cbc162770cec536cc927421e8e5ca143018a8197f664c76b91d7922

0x04ae8d673db4f5d11cf9f39eaa801dce86babff2f9cadf504260f01e7c017855
e3fdf1a5fad9a3413a4bf81a9e4b8ef47fda1a08cc6e58605779513e295dd5797b

– Its nSequence number is set to 0xffffffff.

• Details of the first output:

– It encapsulates an amount of Satoshi 6,062,628.

– It has a P2PKH scriptPubKey given by:

0x76a9149f9a7abd600c0caa03983a77c8c3df8e062cb2fa88ac

• Details of the second output:

– It encapsulates an amount of Satoshi 19,000.

– It has a P2PKH scriptPubKey given by:

0x76a9142cd2c0ac48f6383c72ca45a66fffa37a26b38d7288ac.

• The Bitcoin transaction has version 1 and locktime set to 0.

The following code creates a SIGHASH ALL message for the first UTXO and then signs
it. Note that the method ecdsa Sign used below was originally introduced in the post
entitled ”Bitcoin Elliptic Curve Digital Signature Algorithm (ECDSA)”:

69



2020 Bassam El Khoury Seguias c©

This resulted in a signature (r,s) with:

• r ≡ 0x1f8dd6a75fdd21b36c46b9f6281ddd4339862194c8c4d6931e80761987435a8e

• s ≡ 0x49f1c316242ff34feb3e767d00e02cc9ac5545b1849fd6cebb34d095aefd4ce3

The signature is subsequently encoded in DER format as introduced in the post entitled
”Bitcoin Elliptic Curve Digital Signature Algorithm (ECDSA)” and appended with the
SIGHASH ALL byte. The outcome is:

0x47304402201f8dd6a75fdd21b36c46b9f6281ddd4339862194c8c4d6931e8076
1987435a8e022049f1c316242ff34feb3e767d00e02cc9ac5545b1849fd6cebb

34d095aefd4ce301

Since this UTXO is of type P2PKH, its correpsonding scriptSig is obtained by
concatenating the signature and the UTXO owner’s public key as follows:

0x47304402201f8dd6a75fdd21b36c46b9f6281ddd4339862194c8c4d6931e8076
1987435a8e022049f1c316242ff34feb3e767d00e02cc9ac5545b1849fd6cebb

34d095aefd4ce301410427a5ebe8b8af49e2afd490eb5ce05469b535bb433ea0
bd176eee4977252e8a05961a9f6a58c16dcd2be136c9fe73bc35689673bd8e5e

3cb21a68c1e7367fc7e3

The following code creates a SIGHASH SINGLE message for the second UTXO and
then signs it:

70



2020 Bassam El Khoury Seguias c©

This resulted in a signature (r,s) with:

• r ≡ 0x3c62c8893223e9a8abff7a983e2f569806d5f1f1cb954f25fbeedd204f1c67f3

• s ≡ 0x1d0eaecec9e280bca7d5cc395277e4b8be07d1de34980d4860de202f3db59f81

The signature is subsequently encoded in DER format and appended with the
SIGHASH SINGLE byte. The outcome is :

0x47304402203c62c8893223e9a8abff7a983e2f569806d5f1f1cb954f25fbeedd
204f1c67f302201d0eaecec9e280bca7d5cc395277e4b8be07d1de34980d48

60de202f3db59f8103

Since this UTXO is of type P2PKH, its correpsonding scriptSig is obtained by
concatenating the signature and the UTXO owner’s public key as follows:

0x47304402203c62c8893223e9a8abff7a983e2f569806d5f1f1cb954f25fbeedd
204f1c67f302201d0eaecec9e280bca7d5cc395277e4b8be07d1de34980d48

60de202f3db59f8103410427a5ebe8b8af49e2afd490eb5ce05469b535bb433e
a0bd176eee4977252e8a05961a9f6a58c16dcd2be136c9fe73bc35689673bd8e

5e3cb21a68c1e7367fc7e3

The following code creates a SIGHASH NONE message for the third UTXO and then
signs it:

71



2020 Bassam El Khoury Seguias c©

This resulted in a signature (r,s) with:

• r ≡ 0x8623da9c40faf27cc4d3c6514f74c9ef65fba189079d2d189ba5f2400fba9b35

• s ≡ 0x1801ba05f916906ba1483a4109616a75efcc28d6976708b8d2fdd702440493ed

The signature is subsequently encoded in DER format and appended with the
SIGHASH NONE byte. The outcome is:

0x4830450221008623da9c40faf27cc4d3c6514f74c9ef65fba189079d2d189ba5
f2400fba9b3502201801ba05f916906ba1483a4109616a75efcc28d6976708b8

d2fdd702440493ed02

Since this UTXO is of type P2PKH, its correpsonding scriptSig is obtained by
concatenating the signature and the UTXO owner’s public key as follows:

0x4830450221008623da9c40faf27cc4d3c6514f74c9ef65fba189079d2d189ba5
f2400fba9b3502201801ba05f916906ba1483a4109616a75efcc28d6976708b8
d2fdd702440493ed0241043391bcbfdcc5f9a3c9bcb9b1b4f3296f55ca46c620
7d6c3da8eba4e2ec8b1996c445397a1ac33f610669c307e5853980d7883b036f

9865d5cbbdb7564ed25894

The following code creates a SIGHASH ALL ANYONECANPAY message for the
fourth UTXO and then signs it:

72



2020 Bassam El Khoury Seguias c©

This resulted in a signature (r,s) with:

• r ≡ 0xea7d40b54efe8bcadb03a9d80f9d2083a8e2514b28d408742775b8b48b888b6d

• s ≡ 0x520a8acc1492c6e227a2eedda054c2ab0da0c84be09b70caa066397986696a7c

The signature is subsequently encoded in DER format and appended with the
SIGHASH ALL ANYONECANPAY byte. The outcome is :

0x483045022100ea7d40b54efe8bcadb03a9d80f9d2083a8e2514b28d408742775
b8b48b888b6d0220520a8acc1492c6e227a2eedda054c2ab0da0c84be09b70ca

a066397986696a7c81

Since this UTXO is of type P2PKH, its correpsonding scriptSig is obtained by
concatenating the signature and the UTXO owner’s public key as follows:

0x483045022100ea7d40b54efe8bcadb03a9d80f9d2083a8e2514b28d408742775
b8b48b888b6d0220520a8acc1492c6e227a2eedda054c2ab0da0c84be09b70ca

a066397986696a7c814104ae8d673db4f5d11cf9f39eaa801dce86babff2f9ca
df504260f01e7c017855e3fdf1a5fad9a3413a4bf81a9e4b8ef47fda1a08cc6e

58605779513e295dd5797b

With the various scriptSig fields computed, one gets the testnet Bitcoin transaction
with txid:

0xcf06db9c0a2cddafcfbf2b39d27d1e16d45a7b0ec4fedf6df55d205f7f0b5ffc

73



2020 Bassam El Khoury Seguias c©

Signature verification : We wrap up with a python code that produces the message
associated with a UTXO of type P2PKH or P2SH-MS and verifies the validity of a
signature on this message. The code is for education only and is not optimized for
efficiency. We will rely on the following class and methods previously introduced:

• Methods change Endianness, int2bytes, get Serialized Tx from section 2.

• Method parse Hexstr and class BTC TX introduced in section 5.

• Methods ecdsa Verify, decode DER Signature, and extract Pubkey
introduced in ”Bitcoin Elliptic Curve Digital signature Algorithm (ECDSA)”.

First, we start by defining the various sighash bytes:

Next, we define method modify Tx (tx, i ind) that builds a UTXO’s message based
on its sighash byte (we only consider P2PKH and P2SH-MS). It takes two arguments:

1. An object tx of type BTC TX which holds the current Bitcoin transaction.

2. Index i ind of the input whose scriptSig’s signature needs to be verified.

It returns a five-tuple consisting of:

1. An array of the modified Bitcoin transactions in deserialized form. We choose an
array because a UTXO may have many signatures (e.g., P2SH-MS) not required
to share the same sighash and hence resulting in different messages.

2. An array of the serialized form of the modified Bitcoin transactions.

3. An array of the SHA256 output when applied to the modified Bitcoin transactions.

4. An array of the relevant signatures associated with the input.

5. An array of the relevant public keys associated with the input.

74



2020 Bassam El Khoury Seguias c©

75



2020 Bassam El Khoury Seguias c©

Note that we only performed a single instead of a double SHA256 on the message. This
is because the ECDSA signature algorithm will later perform an additional SHA256
prior to signing the message.

The last step is to verify the validity of a signature given a message and an appropriate
public key. Method check Sig(txid, i ind, net) does precisely this. It takes three
arguments namely, a txid, an input index i ind in order to specify which UTXO to
consider, and a network type net to clarify if the Bitcoin transaction is on mainnet or
testnet. Only UTXOs of type P2PKH or P2SH-MS are tolerated. The method outputs
a Boolean value indicating if the signature(s) associated with the specified UTXO is
(are) valid:

Recall from section 3 and opcode OP CHECKMULTISIG that the signatures associated
with a P2SH-MS UTXO are ordered in the same way as their corresponding public keys

76



2020 Bassam El Khoury Seguias c©

in the scriptSig field. The ECDSA verification algorithm in the method above uses this
observation to validate a UTXO’s signature(s).

We illustrate below how one can run the method to verify the validity of signatures in
Bitcoin transaction with txid:

0x039b145453739a8d58198eb9caa63eb9db9a8bb08cbd0977237e05082561a4a5

This Bitcoin transaction has three inputs with respective UTXOs of type P2SH-MS.

8 Transaction malleability

In section 2, we saw that the txid of a Bitcoin transaction is obtained from the double
SHA256 of its serialized representation. By virtue of being a hashing function, SHA256
exhibits collision resistance. This property, described in the chapter ”Digital Signature
and Other Prerequisites”, ensures with overwhelming probability that any modification
to the content of the Bitcoin transaction will result in a different txid.

Functionally equivalent Bitcoin transactions: An important observation is that
two Bitcoin transactions with two different txid could still be functionally identical.
We say that transactions TX1 and TX2 are functionally equivalent if and only if the
following conditions hold:

• TX1 and TX2 share the same set of inputs. This means that each UTXO
referenced by TX1 (respectively TX2) is also referenced by TX2 (respectively
TX1). Furthermore, each input in TX1 (respectively TX2) and its homologous
counterpart in TX2 (respectively TX1) share the same nSequence number.

• The output sets of TX1 and TX2 are identical. In other words, each output of
TX1 (respectively TX2) specified by a Satoshi amount and scriptPubKey is also
an output of TX2 (respectively TX1).

• TX1 and TX2 share the same nLockTime value.

77



2020 Bassam El Khoury Seguias c©

Simply put, the functional equivalence of two Bitcoin transactions means that they
both use the same sources of funds, intend to send identical amounts to the same
recipients, and encumber their outputs with identical locking conditions.

Note that the functional equivalence conditions exclude any constraint on the scriptSig
fields of the various inputs. A scriptSig field would usually contain signature(s) applied
to specific Bitcoin transaction content (in line with what was described in section 7)
and the message to sign can not be expected to contain its signature in advance. It
turns out that functionally equivalent Bitcoin transactions can have different valid
scriptSigs resulting in different txids. This phenomenon is commonly referred to as
transaction malleability and is summarized in the graph below:

Signature and scriptSig malleability: In the chapter entitled ”Bitcoin Elliptic
Curve Digital Signature Algorithm (ECDSA)” we discussed different instances of
ECDSA signature malleability. In particular we described three instances of
malleability caused by:

1. Non-DER encoded ECDSA signature (addressed in BIP 66).

2. ECDSA’s inherent signature construct (addressed in Pull Request #6769).

3. ECDSA’s reliance on the random parameter k.

However, signatures are not the only source of Bitcoin transaction malleability. The
latter could result from any modification to the scriptSig content as long as the

78



2020 Bassam El Khoury Seguias c©

scriptSig evaluation remains valid. One such example consists in pushing additional
data at the beginning of a valid scriptSig associated with a given scriptPubKey. Since
the additional data push does not get consumed by the scriptPubKey, the resulting
scriptSig’s evaluation would still be valid. Note that this particular malleability instance
can be resolved by imposing a more restrictive consensus rule that invalidates any
Bitcoin transaction whose scriptPuKey evaluation results in more than a single non-zero
value on the stack. However, while some malleability sources could be addressed by
tightening consensus rules, other sources may be more difficult to mitigate.

Sighash malleability: Our definition of functional equivalence is relevant to the case
of a Bitcoin transaction signed with the SIGHASH ALL flag. In such cases, scriptSig
and signature malleability are the only sources of Bitcoin transaction malleability.
However, if less restrictive sighash flags were used (as outlined in section 7), our
definition of functional equivalence can be further relaxed. For example, a Bitcoin
transaction with a single input signed using the SIGHASH NONE flag can be
considered functionally equivalent to any other Bitcoin transaction that uses the same
input and nLockTime value, independently of its choice of output(s). In such instances,
transaction malleability could result from modifying content pertaining to any of the
transaction’s outputs. However, contrary to most types of scriptSig malleability, the
sender has the ability to circumvent sighash malleability by signing her UTXOs using
SIGHASH ALL.

Transaction malleability could lead to malicious behavior : We end this
section with two examples where a malicious party could leverage transaction
malleability to steal funds or to prevent a legitimate party from accessing her funds.
The first example describes a typical malleability attack such as the one that some
suspect was used against MtGox leading to the exchange’s closure in February 2014.
The second example is a hypothetical scenario that demonstrates how transaction
malleability could lead to counter-party risk that can jeopardize the proper functioning
of unconfirmed transaction dependency chains.

1. Example #1: By definition, a malleable signature scheme could lead to the
creation of two valid but different signatures applied to the same Bitcoin
transaction. Such an event would cause the Bitcoin network to end up with at
least two different txids referencing the same content. Such a situation could
motivate a specific type of attack known as a malleability attack. The gist of it
is as follows:

(a) Suppose Alice issues a BTC payment to Bob. Let txid1 be its transaction id.

(b) Suppose that Bob alters the signature of Alice’s transaction (assuming it is a
malleable scheme) right before txid1 gets any confirmation on the blockchain.
This alteration results in a new transaction id, namely txid2, on the same
content (i.e., the intended recipient is still Bob, the funding UTXOs are still
the same, and the amount remains as is).

(c) If txid2 gets confirmed on the blockchain before txid1, the latter will become
orphaned. If Alice does not have the required level of sophistication to track

79



2020 Bassam El Khoury Seguias c©

UTXOs on the blockchain in order to verify that her original UTXOs have
been spent, she will rely instead on the confirmation status of txid1. Given
that it was orphaned, she will conclude that the funds never reached Bob’s
address.

(d) Bob could then defraud her by asking her to issue a new payment knowing
that he would have already received the intended funds by virtue of txid2
being confirmed. He would then receive twice the intended amount.

The above malleability attack can be interpreted as a double-spending instance,
although the malicious party in this case is the receiver and not the sender.

2. Example #2 (unconfirmed transaction dependencies): It is possible for an
unconfirmed Bitcoin transaction TX2 (i.e., not yet broadcasted on the network) to
have at least one of its inputs reference a UTXO corresponding to an output of
yet another unconfirmed Bitcoin transaction TX1. Such protocols rely on a chain
of dependencies between unconfirmed transactions and are particularly vulnerable
to transaction malleability attacks. To see why, suppose that TX1 gets
broadcasted and caught by a malicious node who then malleates it yielding a
functionally equivalent transaction with a different txid TX

′
1. If TX

′
1 gets

confirmed on the network before TX1, the dependency of TX2 on TX1 becomes
futile, rendering TX2 irrelevant. In this example we describe a hypothetical
scenario showcasing such dependencies between unconfirmed Bitcoin transactions.

Suppose Alice and Bob got recently married and decided to create a joint savings
account. Contrary to Bob, Alice succeeded in amassing a small fortune over the
past few years and agreed to initially fund their joint account by transferring BTC
5 to it. Any spending from this account requires both their signatures and to that
end, they created a 2-of-2 multisig P2SH address.

Now suppose Alice broadcasts her BTC 5 funding transaction to the network. For
some reason, suppose that the couple’s relationship deteriorated rapidly leading to
their divorce prior to making any purchase from their joint account. A revengeful
Bob could decide to hold Alice’s funds captive unless she pays him a certain
amount. The possibility of such an unfortunate turn of events pushes Alice to
implement better protective measures. In order to do so, she proceeds as follows:

• Alice prepares her funding transaction such that one of its outputs consists of
BTC 5 destined to the multisig address that she controls with Bob. She signs
this Bitcoin transaction and obtains a txid TX1. However she refrains from
broadcasting it to the network.

• Alice then prepares another transaction whose single input references the
BTC 5 UTXO output of TX1 destined to be sent to an address that she fully
controls.

• Alice subsequently asks Bob to provide his signature for the single input of
this second transaction (recall that this single input is actually encumbered
with a 2-of-2 multisig redeemScript requiring both Alice and Bob’s signatures
to be unlocked).

80



2020 Bassam El Khoury Seguias c©

• Once Alice receives Bob’s signature, she would produce hers on that single
input completing as such this second transaction whose txid can now be
calculated as TX2.

With such a scheme, Alice feels safer to then broadcast TX1. Her rationale is that
in case Bob attempts to withhold the funds from her, she can always broadcast
TX2 and regain her original BTC 5. While Alice initially believed that this new
scheme offered enough protection, she quickly realized that unconfirmed
transaction TX2 exhibits a dependency on unconfirmed transaction TX1, and that
her scheme can be vulnerable to a malleability attack. Indeed, a malicious Bob
could run a node and listen to transactions broadcasted by Alice. If she sends
TX1 to the network, he could catch it soon enough to malleate it and broadcast a
functionally equivalent Bitcoin transaction with txid TX

′
1 6= TX1. If the network

ends up validating TX
′
1, Alice’s TX2 becomes irrelevant and her protective

scheme futile.

What if Alice and Bob’s conjugal problems start after a purchase is successfully
conducted? Suppose for instance that the couple purchased BTC 2 worth of
furniture (leaving a balance of BTC 3 in their savings account) but then their
differences grew apart leading to a separation. To protect herself against such a
possibility, Alice devises a similar scheme as the one presented earlier:

• Alice prepares her purchasing transaction with a single input referencing the
BTC 5 UTXO output of TX1 and outputs consisting of BTC 2 destined to
the furniture shop owner and BTC 3 destined to the multisig address that
she controls with Bob.

• Alice subsequently asks Bob to provide his signature for the single input of
this transaction (recall that this single input is actually encumbered with a
2-of-2 multisig redeemScript requiring both Alice and Bob’s signatures to be
unlocked).

• Once Alice receives Bob’s signature, she would produce hers on that single
input completing as such this first transaction whose txid can now be
calculated as TX3. However she refrains from broadcasting it to the network.

• Alice then prepares another Bitcoin transaction whose single input references
the BTC 3 UTXO output of TX3 destined to be sent to an address that she
fully controls.

• Alice subsequently asks Bob to provide his signature for the single input of
this second transaction (recall that this unique input is actually encumbered
with a 2-of-2 multisig redeemScript requiring both Alice and Bob’s signatures
to be unlocked).

• Once Alice receives Bob’s signature, she would produce hers on that single
input completing as such this second transaction whose txid can now be
calculated as TX4.

Alice is tempted to feel safer about broadcasting TX3 now that she has TX4 to
protect her in case Bob decides to hold the BTC 3 balance captive. However, here
too, unconfirmed transaction TX4 exhibits a dependency on unconfirmed

81



2020 Bassam El Khoury Seguias c©

transaction TX3, leading to a similar vulnerability. Indeed, a malicious Bob could
malleate TX3 into TX

′
3 and potentially render TX4 useless.

In order to address malicious behavior derived from transaction malleability, Bitcoin
developers devised a clever solution that removes all instances of non-intentional
malleability. By non-intentional we mean cases that exclude sighash malleability as well
as malleability derived from different signatures generated on the same UTXO message
by its legitimate owner. The solution known as Segregated Witness or Segwit paved
the way to an improved Bitcoin transaction architecture that dissociates the scriptSig
fields (i.e., witness fields) from the rest of the Bitcoin transaction. We will dedicate a
separate chapter to Segwit transactions.

One of the important achievements of Segwit in so far as the removal of transaction
malleability is concerned, is that it allowed for an effective implementation of the
Lightning Network which inherently relies on unconfirmed transaction dependency
chains. The importance of the Lightning Network in addressing the Bitcoin scalability
challenges deserves a separate chapter that we will publish in the near future.

References

[1] Script. https://en.bitcoin.it/wiki/Script, March 2019.

[2] P2sh statistics.
https://www.p2sh.info/dashboard/db/p2sh-repartition-by-type?orgId=1, Accessed
9 August 2019.

[3] almel. explanation of what an op return transaction looks like.
https://bitcoin.stackexchange.com/questions/29554/explanation-of-what-an-op-
return-transaction-looks-like), July
2014.

[4] Gavin Andresen. Block v2, height in coinbase.
https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki, July 2012.

[5] Gavin Andresen. Pay to script hash.
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki, January 2012.

[6] Boaz Barak. Zero knowledge proofs. https://bit.ly/326dX4c.

[7] Massimo Bartoletti and Livio Pompianu. An analysis of bitcoin op return
metadata. Universita degli Studi di Cagliari, 2017.

[8] Sean Bowe. First zero-knowledge contingent payment (zkcp).
https://www.youtube.com/watch?v=ONUsnRgLVB8, February 2016.

[9] Sean Bowe. pay-to-sudoku. https://github.com/zcash-hackworks/pay-to-sudoku,
2016.

[10] BtcDrak, Mark Friedenbach, and Eric Lombrozo. Bip 112 - checksequenceverify.
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki, August 2015.

82



2020 Bassam El Khoury Seguias c©

[11] Mark Friedenbach, BtcDrak, Nicolas Dorier, and kinoshitajona. Bip 68 - relative
lock-time using consensus-enforced sequence numbers.
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki, May 2015.

[12] David A. Harding and Peter Todd. Bip 125 - opt-in full replace-by-fee signaling.
https://github.com/bitcoin/bips/blob/master/bip-0125.mediawiki, December 2015.

[13] Thomas Kerin and Mark Friedenbach. Bip 113 - median time-past as endpoint for
lock-time calculations.
https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki, August 2015.

[14] Gregory Maxwell. The first successful zero-knowledge contingent payment.
https://bitcoin-rpc.github.io/en/2016/02/26/zero-knowledge-contingent-payments-
announcement/, February
2016.

[15] Sergi Delgado Segura. Bitcoin tools.
https://github.com/sr-gi/bitcoin tools/blob/master/bitcoin tools/utils.py, March
2018.

[16] Nick Szabo. Smart contracts. https://bit.ly/2rLG2Nr, 1994.

[17] Nick Szabo. Formalizing and securing relationships on public networks.
https://nakamotoinstitute.org/formalizing-securing-relationships/, 1997.

[18] Peter Todd. Bip 65 - checklocktimeverify.
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki, October 2014.

[19] Peter Todd and Amir Taaki. Paypub: Trustless payments for information
publishing on bitcoin.
https://github.com/unsystem/paypub/blob/master/EXPLANATION, May 2014.

83


