Supervised Learning with Generalized Linear Models
A matricial formulation

Bassam El Khoury Seguias
April 29, 2019

1 Introduction

The purpose of this note is to provide a matricial formulation of statistical learn-
ing models derived from the class of exponential distributions with dispersion
parameter. We assume that the reader is comfortable with linear algebra and multi-
variable calculus, has an understanding of basic probability theory and is familiar with
supervised learning concepts.

A number of regression and classification models commonly used in supervised learning
settings turn out to be specific cases derived from the family of exponential distribu-
tions. This note is organized as follows:

1. Section 2 describes the family of exponential distributions and their associated Gen-
eralized Linear Model (GLM). The family described in [3] counts a significant
number of distributions including e.g., the univariate Gaussian, Bernoulli, Poisson,
Geometric, and Multinomial cases. Other distributions such as the multivariate
Gaussian lend themselves to a natural generalization of this model. In order to do
so, we extend the family of exponential distributions with dispersion parameter [3]
to include symmetric positive definite dispersion matrices.

2. Section 3 derives the GLM’s Cost Function and its corresponding Gradient and
Hessian all expressed in component form. We derive the expressions associated
with the general case that includes a dispersion matrix. We also derive simplified
versions for the specific case when the dispersion matrix is a positive scalar multiple
of the identity matrix.

3. In Section 4, we limit ourselves to distributions whose dispersion matrix is a positive
scalar multiple of the identity matrix. These are precisely the ones described in [3].
We express their associated Cost Function, Gradient and Hessian using concise
matrix notation. We will separately analyze the case of the multivariate Gaussian
distribution and derive its associated Cost Function and Gradient in matrix form
in section 7.

4. Section 5 provides a matricial formulation of three numerical algorithms that can be
used to minimize the Cost Function. They include the Batch Gradient Descent

2019 Bassam El Khoury Seguias ©

(BGD), Stochastic Gradient Descent (SGD) and Newton Raphson (NR)
methods.

5. Section 6 applies the matricial formulation to a select set of exponential distributions
whose dispersion matrix is a positive scalar multiple of the identity. In particular,
we consider the following:

i. Univariate Gaussian distribution (which yields the familiar linear regression
model)

ii. Bernoulli distribution (which yields the familiar logistic regression model)
iii. Poisson distribution
iv. Geometric distribution

v. Multinomial distribution (which yields the familiar softmax regression model)

6. Section 7 treats the case of the multivariate Gaussian distribution. It is an ex-
ample of an exponential distribution with dispersion matrix that is not necessarily
a positive scalar multiple of the identity matrix. In this case, the dispersion matrix
turns out to be the precision matrix which is the inverse of the covariance matrix.
We derive the corresponding Cost Function in component form and also express it
using matrix notation. We then derive the Cost function’s Gradient, express it in
matrix notation and show how to to minimize the Cost Function using BGD. We
finally consider the specific case of a non-weighted Cost Function without regular-
ization and derive a closed-form solution for the optimal values of its minimizing
parameters.

7. Section 8 provides a python script that implements the GLM Supervised Learning
class using the matrix notation. We limit ourselves to cases where the dispersion
matrix is a positive scalar multiple of the identity matrix. The code provided is
meant for educational purposes and we recommend relying on existing and tested
packages (e.g., scikit-learn) to run specific predictive models.

2 Generalized Linear Models (GLM)

Discriminative supervised learning models: Loosely speaking, a supervised learning
model is an algorithm that when fed a training set (i.e., a set of inputs and their corre-
sponding outputs) derives an optimal function that can make ”good” output predictions
when given new, previously unseen inputs.

More formally, let X an) denote the input and output spaces respectively. Let
{(#@ ¢y, i=1.,m}CcXxxY
denote a given training set for a finite positive integer m. The supervised learning

algorithm will output a function h: X —), that optimizes a certain performance
metric usually expressed in the form of a Cost Function. The function h can then be

2019 Bassam El Khoury Seguias ©

applied to an input x € X to predict its corresponding output y €). Whenever) is
limited to a discrete set of values, we refer to the learning problem as a classification.
Otherwise, we call it a regression.

The exercise of conducting predictions in a deterministic world is futile. Inject that
world with a dose of randomness and that exercise becomes worthwhile. In order to
model randomness, we usually lean on probabilistic descriptions of the distribution of
relevant variables. More specifically, we may assume certain distributions on the set of
inputs, the set of outputs, or joint distributions on inputs and outputs taken together.
For the purpose of this note, we limit ourselves to models that make assumptions on the
distribution of the output given the input, without giving any consideration to the
underlying distribution of the inputs themselves. Such models are referred to as
discriminative learning models.

Generalized Linear models (GLM): In essence, a GLM consists of three elements.

Element #1: A random component modeled as an instance from a family of
probability distributions of the form:

T —a
ply; n,p) = by, p) er LT TW = ol] (1)

Modulo variables and maps naming, this family of distributions corresponds to the one
introduced in [3]. It is defined for positive dispersion parameters p € RT. We now
introduce a more general version where the dispersion parameter p could be a
symmetric positive definite matrix A € S%,, p > 1. We define the enlarged family of
exponential distributions to include those of the following form:

p(y; 0, A) = by, A) el " A T) = lam)]" A a(n)]
= b(y, A) el n" A T(y) — c(nA)]

where we define c(n, A) to be equal to [¢(n)]T A ¢(n). The maps and parameters
appearing in the expression above are described as follows:

e 1 € R? is known as the natural parameter vector. We will soon impose a
relationship between the input x and 7, which will link the input to the output y.

e A is a symmetric element of S¥ , (i.e., a (p X p) symmetric positive-definite
matrix). We refer to it as the dispersion parameter matrix.

e b:R"xS%, — RT is known as the non-negative base measure. It maps (y, A)
to the positive scalar value b(y, A).

e T(y) € R? is a sufficient statistic of y € R" and has the same dimension as 7.
For all practical purposes, this means that the probability of a random variable

2019 Bassam El Khoury Seguias ©

taking on a particular value when conditioned on y is equal to the probability of it
taking the same value when conditioned on T'(y). In other terms, whatever can be
learned by conditioning on y can also be learned by conditioning on T'(y).

e ¢:R?” xS%, — Ris known as the log-partition function. It maps (1, A) to
c(n,A) = [q(n)]* A q(n), where ¢ is a vector-valued map from R into R? that
depends only on 1. We denote the components of the column vector ¢(n) by
[1(n) . g,(n)]*, where each ¢;,i € {1, .., p} is a map from R? into R.

The rationale for the log-partition nomenclature stems from it being chosen to

ensure that p(y; 7, A) integrates to 1. Doing so allows us to express ¢(n, A) as a
function of the other parameters:

[Zoply; N dy = 1 <= [T b(y,A)el? ATW =M gy = 1 <=

ln{f ’ e[WTAT(?J)—C(TLA)]dy} — O <
In (e ™My 4 in { [Z by, A) el ATW gy} = 0 =
(. A) = [am)]” A gl zn{/ by, A) el AT gy) 3)

In what follows, we derive expressions for the log-partition function’s Gradient
and Hessian:

The log-partition function’s Gradient: We start by defining the one-form
Gradient of ¢ with respect to 1 to be the quantity:

(Vyc) = [g—ncl..a%]

In Euclidean p—space, the associated column vector Gradient is denoted by
(Vy 0)F. V5 € {1, ..., p}, we can write:

e = D { [% by, A) el " ATW] qy } =

on; 87]]

{2 by, A) el ™ AT Ty 3 { [[AT(y)); by, A) el 77 ATO] gy } =
{ e} { [[AT(y)]; bly, A) el " ATO] dy } =
I AT ()] b(y,A) el 7" ATG =M T gy = E[[AT(y)];; n,A]

As a result, we conclude that:

(Vg o)" =AM E[T(y); n,A] (4)

4

2019 Bassam El Khoury Seguias ©

The log-partition function’s Hessian: We first compute the second derivative

of ¢ with respect to the vector 7 as follows:

67?]’28C7]k = o2 [P AT by, A) el ATW =) T gy —
Jo INT ()] by, A) [[ATW)e — 5
E{ATW] [ATW — 5= mA} =

E{ATW)]; ATk Ay — E{IAT@)l; ELIANT W)k A}

] el 7" ATW) —cnd)] gy

E{IATW)]; ATl m A} — E{IAT@)l; 0. A} x E{IAT(y)lks A}

We conclude that:

(5)

An important implication is that the Hessian of ¢ with respect to 7 is a covariance
matrix and is hence symmetric positive semi-definite. This demonstrates that c is

convex in 7. Furthermore, ¢ is clearly linear in A since ¢(n, A)

As a result, c is also convex in A.

[a(m]™ A q(n).

Element #2: A mean function h : R? x §% | — RP that maps (1, A) to the expected

value of the sufficient statistic T'(y) :

h(n,A) = E[T(y); n,\ |

E[(T(y))1; n, A

E[T(y); n,A] =

We can express the mean function A in terms of the log-partition function ¢, or

E[(T(5))y; mA]

(6)

equivalently in terms of the map ¢. To do so, we first define the derivative operator of
the vector-valued map ¢ with respect to n to be the quantity:

g1
om

(D, q) = .
Oqp
on

Equations (4) and (6) show that:

991
8771J
Oap
8771)

h(nvA) = E[T(?/)a U’A] = (A)_l

b}

2019 Bassam El Khoury Seguias ©

We could also invoke the chain rule and write:
(Vn¢) = (Vg) (Dyq) =4l la(m]™ A q(n)] (D q) =
[(A+AT) q(n)] (D, q) = 2 [qm)]” A (D, q) (since A is symmetric)

It follows that:

(Vn C)T = 2 (D, Q)T A q(n) (8)

And hence, that:

h(n,\) = E[T(y); n,A] = 2 (N (D,)" A qln) (9)

Element #3: A design criteria that imposes a linear relationship between the
natural parameter vector n and the input x. Note that the linearity condition is a
matter of choice and one could theoretically investigate more complex choices including
e.g., quadratic or higher order relationships. The linearity condition is expressed as

n = Oz, where:

eneR (p=1)

e v € R"! (n > 1) is the design vector given by [1 z; ... z,]7. The z; (i = 1,...,n)
are the n features (i.e., components of the design vector) and the leading 1
accounts for the intercept term.

e O is the coefficient matrix € RP*(*+1) Note that © reduces to a row vector
whenever p = 1.

The design criteria establishes a link between input and output. In other terms,
knowledge of x, ©, A and the mean function h allow one to compute:

h(n, A) = h(©x,A) = E[(T(y)) | =; ©,A]

Subsequently, one can make informed predictions about the output given a certain
input as we will later see in sections 6 and 7.

The special case of a dispersion parameter: In what follows, we consider the
special case of a dispersion matrix A equal to a positive scalar multiple p € R of the
(p X p) identity matrix I,. We write A = p x I,,. This case includes many of the known
probability distributions including the univariate Gaussian, Bernoulli, Poisson,
Geometric and Multinomial cases that we will revisit in section 6. As expected, this
particular case lends itself to further simplification of the mean and the log-partition
functions, as well as the latter’s Gradient and Hessian expressions:

2019 Bassam El Khoury Seguias ©

e First, note that in this case, the form of the distribution reduces to:

ply; n,p) =bly, p) e’ | 0" T(y) — lam]" a(n)] (10)

By defining a : R? — R to be the map taking 7 to a(n) = [¢(n)]* ¢(n), we can
rewrite the probability distribution as:

p(y; 1, p) = bly, p) e? L1 T — at)] (11)

It becomes clear that the log-partition function can be expressed as:

c(n,p) = p a(n) (12)

e The Gradient of the log-partition function can also be simplified and written as:

(VHC)T =p (Vna)T (13)

Equation (13) coupled with equation (4) demonstrate that:

h(n) = E[T(y); n]= (v, a)" (14)

An important observation is that in this case, the mean function ~» does not
depend on the dispersion parameter p. It is completely determined by
the natural parameter 7.

e Lastly, note that equation (12) shows that:

9%c 0?a
= 15
onon. " onyom: 15)
Coupled with equation (5), equation (12) allows us to conclude that:
Col [T}, TWks mp] = 2 =20 (16
y 20 y ks 7]7p p an]ank

An important implication is that the Hessian of a with respect to 7 is a positive
multiple of a covariance matrix and is hence positive semi-definite. This shows
that a is convex in 7.

2019 Bassam El Khoury Seguias ©

3 GLM’s Cost Function, Gradient and Hessian

The long form basic Cost Function: In order to compute h(©z, A) and conduct
predictions on a given input x, one first needs to decide on the dispersion matrix A and
the matrix © of coefficients. The performance of the predictive model will be dictated
by the choice of © and A. In our supervised learning setting, these two matrices will be
jointly determined by:

e The pre-defined training set U, {(z¥,y®)} for a given integer m > 1.

e The choice of an objective function to optimize. We refer to it as the Cost
Function, denote it by J and define it as a map that takes © and A as inputs
and that outputs a real number. For the purpose of this note, we derive J by
applying the principle of Maximum Likelihood which we describe next.

Define the likelihood function L associated with a training set U™, {(z®, y®)} to be
L : R4 5 RPXP s (0, 1]
(©,A) = L(©,A) = p(y™, ... y™ | 20, .. 20m; ©, A)

Our objective is to find the matrices © and A that maximize L. To proceed further, we
assume that Vi € {1,...,m}, ¥ depends only on 2. We get:

L(©,A) =
p(y® | y@, oy M2 e A) x py@, .y | 2W e 9 A) =
ply™ | 205 0,A) x p(y?, ...yt | 2O, at; 0,A) =
Iy p(y® | 29 ©,7)

The presence of products coupled with the exponential nature of the conditional
probability distribution makes it more appealing to invoke the natural logarithm
function. Most importantly, the logarithm function is increasing on the subset of
positive real numbers. This implies that maximizing the likelihood function L is
equivalent to maximizing the log-likelihood function | = In(L) over all possible choices
of © and A. We write:

(©,A) =In [II72) p(y? | 25 ©,A)] = B2, In [p(y? | 2; ©,4)] =

27 dn [b(y@,A) el (@) eT A T(yW) — ¢(©z),A) Il =
Sy in (0(y@A)) + By [(@D)TeT AT(yY) — (02, A)]

Finally, note that maximizing [is equivalent to minimizing (—-L1). We thus define the
long form basic Cost Function to be the function:

JEB) Rpx (1) 5 RPXP 5 R that maps (6, A) to

2019 Bassam El Khoury Seguias ©

JED(O,4) = % Sy [e(©29,8) — @) T ATWY) — in (b(y©,A))]| (17)

We use the descriptor long form to distinguish it from a shorter form associated with
the special case of a dispersion matrix A equal to a scalar multiple of the identity
matrix. On the other hand, the basic attribute will be contrasted with a more general
counterpart that will incorporate weights and a regularization parameter as we will see
shortly.

The optimal values ©* and A* must satisfy:

(0%, A%) = argmine) JEP(O,A)

The long form general Cost Function: We can generalize further the Cost
Function by accounting for two additional factors:

1. At times, when conducting a prediction on an input z € R+ one might want to
give more weight to training set points that are in the vicinity of . One common
way of doing so is by invoking a particular weight function w defined as follows:

w: R x R 5 R

(x,t) — e a7 (=) (t-2)

Given an input z on which a prediction needs to be conducted, one can evaluate
w at the different training points @, i € {1,...,m}. We let w$ denote the
quantity ¢z @) @O=1) ohd pefer to it as the weight attributed to the i
training point associated with input x.

Different values of x yield different weights attributed to the same training point.
Moreover, larger values of the bandwidth paramter 7 result in more inputs in the
neighborhood of x being attributed higher weights. In the extreme case when

T — 00, all training set inputs get a weight of 1.

2. It is common practice in convex optimization to introduce a regularization
component to the objective function. The purpose of it is to penalize high values
of the optimization variables. In our case, the optimization variables consist of:

e The matrix of coefficients © = [©; .. ©,]7 where ©; = [0}1 ... O;(n41)]" for

jeA{l,...,p}.
e The dispersion matrix A = [A; .. A,]7 where A; = [pj1 ... p;p]T for
jeA{l,..,p}.

The regularization term is usually proportional to the size of the variable, where
size is measured according to some norm (e.g., L2 or L1). In our case, we add a

9

2019 Bassam El Khoury Seguias ©

regularization term given by 3 3¥_, [©7©; + ATAj]. The A variable is the
proportionality constant and the other factor is the sum of the squares of the L2
norm of each ©; and each A;, j € {1,...,p}.

Given a specific x and A\, we denote the corresponding long form general Cost
Function by Jggf\G). The subscripts are meant to highlight the potential dependence on
weights (as dictated by the input z) and on the regularization parameter A\. We have:

JUEGO) . Rpx (1) 5 RPXP 5 R

Z,

(©,A) —

H/\
st
|

JED (©,80) = — xm wd { (@
| | " (18)
()T &7 A T(D) — In (b(y@, A)) } +

An important observation is that Jg(ci\G) is convex in ©. To see why, recall from section 2
that the map c is convex in 7. Furthermore, 7 = Oz is linear in © and so ¢(@x™) is
convex in ©. Moreover, — ()T ©T T(y?) is linear in © and thus convex. Finally, one
can easily show that Eg-':l ®JT ©; is also convex in ©. Being a positively scaled sum of
convex functions, Jii\G) is thus convex in ©. This in turn implies the existence of a
globally minimizing value ©*.

In addition, note that all the terms appearing in JQ(C’L/\G) are convex in A (recall that we've
seen in section 2 that the log-partition function c¢ is convex in A), except possibly for the
term —In(b(y®@, A)). If b(y®¥, A) is convex in A, then so will —In(b(y®, A)), and as
a result, so will Jig\G). This would then imply the existence of a globally minimizing A*.

The long form general Cost Function’s Gradient: We define the Gradient of

Jm(iG) with respect to matrices © and A to be the map:

V4 (Jm(LAG)) - RpX(nt1) o RPXP _y RPX (pHnt1)

(©,A) —

Voa (JEP) = [ve (JE) wa (15] (19)

where, Vg (JZE’L/\G)) and /7 (Jii\G)) are defined as follows:

(Le) 0J) aJh%
L6) Ve, (Jx,)\) 0611 T 001(ng1
Yo (JmA) = = . . .
Ve, (J5) 27,3 27,5
) 01 " pnia

10

2019 Bassam El Khoury Seguias ©

and
(LG) 97,3 075"
(LG) VA1 (J:r,)\) Ip11 o aplp
VA (J:Jc,)\): G = E'LG) . E'LG)
L
VA, (Ji,x)) 0Ty 4) 0T, 4
8/)171 Oppp

Note that Vi € {1, ...,p}, Ve, (Jm 5) and \/a, (J, LG)), are taken to be one-forms

(being covariant derivatives of the scalar function Ja:’ I\ “) in the directions of vector ©;
and A; respectively). We subsequently represent them in Euclidean space as row vectors.

Forany 1 <k <pand1<j<(n+1), The (kj)" component of v@(Jif\G)) is given by:

90)
Z, m
90, Z =1 wﬂﬂ [30, 37]

(029, A) fi= — 2l [A TN] + My

Recall that by design, we chose = [, .. ,]7 = Oz, and so n, = OTx. As a result, the
only value of s for which 7, contains the term 6;; is s = k. We simplify to obtain:

(LG)
aJ,

o = S o) [(02, 8) F — o) AT] + My

And hence conclude that:

b, m izlwx[a_%(x’mj =z [ATW)k] + A (20)
Similarly, one finds that for 1 < k,j < p, The (kj)"* component of VA(JI(,LAG)) is:
0J D 1 , '
= Lo) {2 (020, 0) -
e o (21)
02 [T(y)]; — 22 (4, A) } + Apyy
J b(y(l)7 A) apkj J

The long form general Cost Function’s Hessian: Let a be the column vector
€ RPPH7+1) whose components are given by:

[911 .. 91(n+1) .. le .. Hp(n—‘rl) P11 - P1p -+ Ppl -- ppp]T

We define the Hessian of the Cost Function Ji’L/\G) with respect to matrices © and A to
be the map:

11

2019 Bassam El Khoury Seguias ©
H(J(L)\G)) - Rpx(n+1) o RPXP _y RP(pHRF1)xp(p+nt1)
2459

(LG)
on” S
(Le) da10aq Oa10a,(pynt1)
(0,A) = Hox (JEO) = . .
62 J/{L)\G) 82 J'(-L)\G)
dap(ptnt1)don

9ap(ptn+1) 9% (ptnt1)

We consider three cases:

‘ 9258
o For 1 <u,k<p, 1<v,j<(n+1), theae I

- component of Hg (J:]E,L)\G)) is:

g Sl [(000, 8) of — &) NTO)] + My } =

Zml w? xg-z) 8061:@ [%(@m("),/&) | 4+ Aourlu;

Let f = 86 and ¢ the map that takes (1, A) to g(n, A) = (02 A). The chain
rule allows us to write:

%(f g9) =%, an <®x oy ggﬁ Yy 377 ank (O @) A)

89uv

Since 1, = ©Tx, we get 3 a”“" = 0 whenever s # u. As a result:

2 (fog) = 52 (02, A) !

90Nk, Ly
We conclude that:
aQJ(L)\G) 1))) 82
Z A 2 oy () 0 0 Oz® A AOukOui 22
86’uv80kj m i=1 Wz x] o anuank< :B) * wov ()

2 (LG)

0 o
e For 1 <u,k,v,j <p, the @]—ap component of Hg A (JJE,L/\G)) is given by

apuv { E =1 IU;E [%(@J](Z),A) -

©2D [T(y)); — 550

s oo WA T+ i}
We get:

12

2019 Bassam El Khoury Seguias ©

82J(L)\G) 1 . 820 .

— 2 = oy oW = (@2 A) +

apuvapkj m = ¢ { alam’apkj<)
1 ob 4 ob , , 0%b , (23)
: @A @A) — by, A) ———— (D, A

+ AOukOu;j
. RN 9245
o For 1 <u,k,v<p, 1<j<(n+1),the Brandbrs and B0 components of

Ho (Jii\G)) are equal and are given by:

O L mr wd) [2200, A) o) — ZPAT@)] + My }

Opuv
We get:
LG LG
P P
apuvaekj aekjapuv (24)
Lo ooy 0% ; O @y
it wd | m(@fﬂ(LAY 2 = 2Ty D)y G]

The short form basic Cost Function: With the exception of the multivariate
Gaussian distribution, all the other probability distributions that we consider in this
note have a dispersion matrix that is a positive scalar multiple of the identity matrix.
For this particular case, equations (12) and (14) in section 2 showed that:

e The log partition function is given by ¢(n, p) = p a(n), where p is now a positive
scalar and 7 is the natural parameter vector.

e The mean function A is independent of the dispersion parameter p and depends
solely on the natural parameter 7. We write h(n) = h(©zx) for a given coefficient
matrix © and input vector x.

In what follows, we simplify the expression of the Cost Function associated with such a
case and derive simpler formulae for the components of its Gradient and its Hessian. By
substituting the matrix A with pI, (where p € R* and p > 1) in equation (17), and by
applying equation (12), we can write:

JEB(©,p) = L ¥ [pa(©2?) — p ()T T T(yD) — In (by?,p))]

Minimizing J*B) with respect to © is equivalent to minimizing the following quantity
with respect to O:

w Sy [pa(@29) — p (a)T 6T T(y®)]

m

13

2019 Bassam El Khoury Seguias ©

And since p is a positive scalar, the optimal value of © that minimizes this quantity is
the same as the one that minimizes the following quantity:

JEP©) = L3, [a(0®) — (1) &7 T(y9)] (25)

We refer to J3B) as the short form basic Cost Function. An important observation
is that J3B) depends exclusively on ©. And since in this particular case the mean
function A also depends only on ©, one can find the optimal coefficient matrix by
minimizing J#) and then plugging it into h to conduct predictions.

Equally important is the fact that J5) is convex in ©. The proof is similar to the one
we previously used to establish the convexity of Ji’L/\G) in ©.

The short form general Cost Function: The same approach used to derive the
long form general Cost Function from its basic counterpart can be applied to obtain the
following short form general Cost Function:

Given a specific x and A, the corresponding short form general Cost Function is
the map JiiG) :Rpx(+1) 5 R that takes O to:

| i i i i A
I3©) = — 5wl a(@2) — @) T T(Y)] + T, efe, (26)

The short form general Cost Function’s Gradient: We define the Gradient of

Jéic) with respect to the matrix © to be the map:

Vi (J(*S;\G)) L RpX(n+1) _y Rpx(n+l)

z,

(5G) 8J 57 8J 57
Ve, (Jx,)\) 9011 001 (g
© — Ve (Jff)) = =
Ve, (JO) 05,50 anP
’ Bp1 T pinrn

For 1 <k<pand1<j<(n+1), The (kj)" component of /g (JQE’S/\G)) is given by:

0Ly _ 1 s wl [3P, 22 (@) Dne WD ()]] 4+ Ay
90, m =1 Wz s=1 oy, 0% j Y)lk kj

Recall that by design, we chose n = [n; .. n,]7 = Oz, and so 7, = ©Tz. As a result, the

only value of s for which 7, contains the term 0;; is s = k. This allows us to write

aJa(vSG) m (a i)y O (i
S = R um el [2e0a) FE — o [T(yD))] + My

14

2019 Bassam El Khoury Seguias ©

And hence conclude that:

anCSG) 1 da i ;
2= Ll [e el -) IO + M| (D
J

The short form general Cost Function’s Hessian: We define the Hessian of

Jéi\G) with respect to the matrix © to be the map:

H(J(SG)) . Rpx(n—f—l) N Rp(n+1)><p(n+1)

T,

(Hi)e . (Hip)e
0 > Ho (JS)=| . . . |8
(le)e - (pr)®

where Yu, k € {1,...,p}, the block matrix (Hu)e (Jg(gic)) € R+ g given by

SG) 5G
82me M
00,1001 . 89u189k(n+1)
(8G)y _
(Hu)o (J5) = o .
82.] 62‘]95,)\
80u(n+1)89k1 00y (n1)00k(nt1)

For 1 <u,k<pand1l<w,j5<(n+1), the components of Hg (Jx(iG)) are given by

BQJ(SG)

= = G { Ly, wd) [22 (©x1) 2 = 2O [Ty] + My} =

L ¥m, me x() 2 | aa%(@l' N1+ Aurd;

Let f = ‘9“ and g be the function mapping 7 to g(n) = ©2®. The chain rule allows us
to erte

aeiv(fog) = ¥, 56,{ (O Z)) 369% = Y, s 877k(@ (Z) 389_73;
Since 1, = ©%z, we conclude that:
§2J5) 1 92
A oyl gD g 02D) + Aoy, 28
aeuvaekj m i=1 Wy :L‘] Ty anuank(T) + kCvj ()

15

2019 Bassam El Khoury Seguias ©

4 Matricial formulation of the Cost Function, its
Gradient, and its Hessian

In this section, we limit ourselves to the short form general Cost Function JS/\G).
Since there is no room for confusion, we will drop the superscript (SG), refer to it
simply as the Cost Function and denote it by J,). In order to derive a concise
notation for J, y, its Gradient <7(J,), and its Hessian H(J, y), we first introduce
relevant vectorial and matricial quantities. In what follows, we recall that p denotes the
dimension of the sufficient statistic T'(y), r denotes that of y, n denotes the number of
input features and m denotes the number of training examples.

e The coefficient matrix © € R?*("+1) is given by:

CH O - Ot
O=|..[=1]. . .
or] o b

The design matrix X € R™*("+1 i5 given by:

(1) (1)

T 1z’ .. ay,
X=| .. |=|1 . . .
R I R O

e The target matrix Y € R"™*" for some r > p is given by:
1 1
yT gy
Y=| .. (=] . . .
m)T m m
y(m) yg) y7(~)

e The sufficient statistic matrix 7' € R™*? is given by:
T(yM)” GRENNS

T = =1

m)\T m m
T (™) tg) tz())

The weight matrix W, € R™*™ associated with input x and weight function
w, : R™™ — R is given by:

16

2019 Bassam El Khoury Seguias ©

The regularization matrix L, € RTDx("+1) a550ciated with parameter A € R
is given by:
0 0 .. 0
A0 .0

00 0 .. A
The log-partition vector Ag € R™ associated with the log-partition function
a:R? — R that maps n = [n; ... n,]" to a(n) = [¢(n)]* q(n) is given by:

a(©xW)

Ao =
a(©x™)

The log-partition Gradient matrix Dg € RP*™ is given by:
20 (e .. 20(0gm)

om
Do =
2 (0xV) . Jn(extm)

The second order diagonal matrix (Sux)e € R"*" where u, k € {1,...,p} is
given by:

9%a
i (O2) 0 o L 0
(Sur)o = 0 anuank(@x) 0 .. 0

The unit vector 1,, € R™ is given by:

1,, =

The Cost Function in matrix form: Suppose U € R*** M € RV € R*? and
let ©7T denote the i** row of U and v the j* column of V. If P = UMV € R**¢, one
can easily see that P;; = u®T MoV,

Substituting U, M and V with matrices X, ©7 and T respectively, one concludes that
the diagonal elements of X ©7 T7 are given by 2" 07 T(y), i € {1,...,m}.
Furthermore, multiplying this matricial product by the diagonal weight matrix W, one
can see that the diagonal elements of the product X @7 T7 W, are given by

wl 20T QT T(y"), i € {1,...,m}.

As a result, we can rewrite equation (26) more concisely in matrix form as:

Jr©) = L [1LW, A — Tr(X 7 T7W,)] + STr(0 %) (20)

1
m

17

2019 Bassam El Khoury Seguias ©

The Gradient of the Cost Function in matrix form: Using the same observation
made in the previous paragraph regarding the product of three matrices, one can
rewrite equation (27) in a more concise matrix notation as follows:

[((De — T") W, X | + © L, (30)

1
Ve (Ja:)\) - E

The Hessian of the Cost Function in matrix form: Similary, we can rewrite
equation (28) in matrix notation as follows:

Vu, k € {1,...,p},
1)
(Hup)o (Jop) = o X" (Sur)e Wo X Jifu#k (31)
1)
(Huk)@ (']x,)\) = E XT (Suk)@ W:c X + L)\ 77ff u=~r

5 Algorithms to minimize the convex Cost Function

In this section too, we limit ourselves to the short form general Cost Function J, .
Our objective is to find the optimal ©* = argming J, A(0). If the weight functions ne
are independent of z for all training examples ¢ = 1, ..., m, then ©* will not depend on x
and once it is computed for a given input, it can be stored and used for all other inputs.
This is known as a parametric setting. If the weight functions depend on z, then each x
will have a different O} associated with it. This procedure is known as non-parametric
and is clearly computationally more demanding than its parametric counterpart. In

what follows, we introduce three numerical methods for finding ©* :

1. Batch Gradient Descent (BGD): Suppose f : R — R is a differentiable convex
function of one variable. Starting at any zp € R, one can get f'(xy) = %(:co). If
its negative (positive), then at xy the function is decreasing (increasing). As a
result, to get closer to the value of x* that minimizes f, one can try a value
x1 > x (11 < X0).

One way of updating the value of ¢ is by letting x; < g — af' (), for some
positive learning rate o € R*. This procedure can be repeated until convergence.
Note however, that the choice of « is critical since too large a value will cause
divergence, while a value that is too small will cause slow convergence.

18

2019 Bassam El Khoury Seguias ©

A LARGE LEARNING RATE CAN CAUSE DIVERGENCE

(x2.y2) = (1. 52)

Ly =(-3.5)

(xg. yo) = (1. ;)
(x'.y1=10,1)

The same can be said of differentiable functions of p variables (p > 1) where this
logic gets applied to each variable. In this context, f’ is replaced by the Gradient
of f and the learning rate a by the learning rate matrix R € RP*? defined as:

a 0 0 0
RZOaO 0
0 0 0 o

One can estimate the optimal matrix ©* by running the following algorithm
known as Batch Gradient Descent (BGD). We let iter denote an iteration count
variable and mazx-iter denote the maximum number of allowed iterations before
testing for convergence:

) « Initialize()
(It could be initialized to e.g., the zero p by (n + 1) matrix).

For (iter < maaz-iter)

{
Omew) = Q) _ R g teurn (Jun)

@(cur‘r) — @(new)

Update all the ©-dependent quantities including
i.) Ae
it.) Deg
iii.) JyA(©)
.) Ve (Jzn)

(A%

19

2019 Bassam El Khoury Seguias ©

So vk € {1,..,p}, j € {1,..,(n+ 1)}, the following update is performed:

new curr (9‘]:127
(Ox) ") 4= (1) ™ — & 5=

where we have:

w2 = g S [§e0) 2 — 2 0] + M0y and) = [T

89kj m

Note that BGD requires that all the entries of the new coefficient matrix ©¢%) be
simultaneously updated before they can be used in the next iteration.

2. Stochastic Gradient Descent (SGD): In BGD, everytime we updated the
value of 0y; We had to perform a summation over all training examples as

mandated by

a
updates of the coefﬁ(nents. In other terms, for each training example 1 <7 < m,

SGD conducts the following update round Vk € {1,..,p}, j € {l,..,(n+ 1)}

new curr o] 7 a[l curr [i i i curr
(1) ") = (Big) ™) — 2wl [(@ w®) i — a4]+ A(ly))
The entries of the new coefficient matrix @) must all get simultancously
updated for each training example in each iteration before they can be used in the
next instance. SGD usually achieves acceptable convergence faster than BGD,
especially when the size m of the training set is very large

In order to describe the SGD algorithm in a more concise matrix form, we define a
set of m new matrices Stochg)(ny,\) € Rex(m+l) 1 <j <m given by:

w1 da i i), (i w1 oa i i
s [92(970)al) —) + My . e [22(020)ay),) — a1+ M
. - o
i (2o (©20)2l) — 20+ A e (20202l) — 2 1]+ M)

SGD is a variant of BGD that runs the following algorithm:

Oleurr) « [Initialize()
(It could be initialized to e.g., the zero p by (n + 1) matrix).

For (iter < maax-iter)

{
For (i =1,...,m)

{
@(new) — @(CUTT) R StOCh(ezcuM)(Jac,/\)
@(curr) — @(new)

20

2019 Bassam El Khoury Seguias ©

Update all the ©-dependent quantities including
7.)A@

Stochg (mod m) + 1)<Jx,)\)

3. Newton-Raphson (NR): The choice of the learning rate a used in BGD and
SGD is of special importance since it can either cause divergence or help achieve
faster convergence. One limiting factor in the implementation of the previous
Gradient descent algorithms is the fixed nature of a. Computational complexity
aside, it would be beneficial if at every iteration, the algorithm could dynamically
choose an appropriate a so as to reduce the number of steps needed to ahieve
convergence. Enters the Newton Raphson (NR) method.

To motivate it, we lean on a Taylor series expansion of the Cost Function J, y
about a point (i.e., coefficient matrix) ©*") up to first order. We get:

curr n 0Jg, curr curr
Toa(©) & A (O + Th_) Tt G (0 (0 — 03"")

x)\

If we want to get to the optimal © in one step, we need to set 2 to 0 when

evaluated at ©, Vi € {1,...,p} and j € {1,...,(n+ 1)}. Taking the first derivative
with respect to 8;; of the right and left hand sides of the approximation, and

noting that J, (0 is a constant and V 1 < u, k < p, Q(Curr) are constants, we
get:

0Jy n BQJa: curr (curr) an, curr
2 (0) A0 + Sh_y Uit { e (00) (B, —)} + G (Om)

Setting 68{5”}5(@) to 0 for alli e {1,.,p}, g€ {l,...,(n+ 1)}, we get:

n 9? Jg, curr curr) an, curr)) __
S0 S g () (B — 05) } + GE2(60m) =0

Recall that © and /e (J,) are both elements of RP*("+1)_ We define the
vectorized versions of © and Ve (J;) to be the elements of RV given by:

_ _ B 8]11)\ T
011 9611
. 8J;,A
O, 01(n+1) Ve, (Je)]" 901 (nt1)
vect(©) = = h vect(Ve (Jen)) =) =
®p epl [VGp (Jm)\)]T 88?_;’;
Op(n+1) 01
=P - -aep(n+1)-

21

2019 Bassam El Khoury Seguias ©

We can subsequently write the above conditions in a more concise matrix form as
follows:

Hegeurn) (Jo0) vect(© — O 4 vect(Vgeurn (Jon)) =0
Which gives the following NR algorithm:

Otleurr) « [Initialize()
(It could be initialized to e.g., the zero p by (n + 1) matrix).

For (iter < maaz-iter)
Uect(®(new)) — Uect(@(cu”)) - [H@(surr) (Jx,)\)]_l UeCt(ve(cur'r) (J:B,)\>)
@(curr) «— @(new)

Update all the ©-dependent quantities including
z'.) A@

u)@7 7k:17"'7p

}

Here too, the update rule is simultaneous. This means that we keep using @)
until all entries have been calculated, at which point we update ©#") to @ew),

NR is usually faster to converge when measured in terms of number of iterations.
However, convergence depends on the invertibility of the Hessian at each iteration.
This is not always guaranteed (e.g., multinomial classification with more than two
classes). Alternatively, one could circumvent this problem by applying a modified
version of NR as described in e.g., [2]. Furthermore, even when convergence is
guaranteed, NR can be computationally taxing due to the matrix inversion
operation at each iteration. Taking that into account, usage of NR is usually
preferred whenever the dimensions of H are small (i.e., small p and n).

6 Specific distribution examples

In what follows, we consider a number of probability distributions whose dispersion
matrix is of the form pI, where p is a positive dispersion scalar and I, is the (p X p)
identity matrix for p > 1. In order to devise the relevant discriminative supervised
learning model associated with an instance of the class of such distributions, we proceed
as follows:

Step 1: Identify the dimensions of the target matrix Y € R™*" where m is the

22

2019 Bassam El Khoury Seguias ©

number of training examples and r the dimension of each output.

Step 2: Identify the natural parameter n € R? and dispersion parameter p € R
associated with the exponential distribution, compute the sufficient statistic
matrix 7' € R™*? compute the non-negative base measure b(y, p) and derive the
log-partition function a : RP — R. Identify the dimensions of the coefficient matrix
O € Rpx(nt+l),

Step 3: Compute the set of p functions g—% R - R, Vk e {1,...,p}.

Step 4: If needed (e.g., in the case of NR algorithm), compute the set of p?

: d%a_ .
functions Fradm RP — R, Vu,k € {1,...,p}.

Step 5: Compute the log-partition vector Ag € R™.
Step 6: Compute the log-partition Gradient matrix Dg € RP*™,

Step 7: If needed (e.g., in the case of NR algorithm), compute the set of p?
second order diagonal matrices (Syux)e € R"™*™.

Step 8: Compute the Cost Function J, ,(0), its Gradient Ve (J.) and its
Hessian Hg (J;).

Step 9: Calculate the optimal ©* using e.g., BGD, SGD, NR or using a closed
form solution if applicable.

Step 10: Test the model on an adequate test set and then conduct predictions on
new input using the mean function h that maps n = GOx to

8‘9—7?1(@ x)
h(n) = - = E[T(y) | z;0]
da (@ g)

Onp

t. The univariate Gaussian distribution: The corresponding probability
distribution is:

: 1 —5.z (y—n)?
plys p0) = Fo=se?

We rewite it in an equivalent form that makes it easier to identify as a member of the
exponential family:

1 —ﬁy]e[p(uy—%/ﬂ)]

p(y; po) =| T ©

Step 1: The target matrix Y € R™*!. In other terms, each training example
i € {1,..,m} has a univariate output y associated with it.

Step 2: We identify the following quantities:

e The natural parameter n =y € R

23

2019 Bassam El Khoury Seguias ©

e The sufficient statistic is T(y) = y. Matrix T =Y € R™*! (here, p = 1)
e The dispersion matrix is pl, = 0—121'1 = Ulg
e The non-negative base measure is b(y, p) = % e~3 Py

e The log-partition function maps n € R to:

e The coefficient matrix is a row vector © € R*(+1)

Step 3: The function g—; : R — R is the identity map that takes n to 7.

Step 4: If needed (e.g., in the case of NR algorithm), the function ging ‘R =R,
maps 7 to the constant value 1.

Step 5: The log-partition vector is given by:
(0 xM)?
Ao = = h e R™
(© +m):

Step 6: The log-partition Gradient matrix is:
Do=[0©zW . ©zm™] ¢ R>™
Step 7: If needed (e.g., in the case of NR algorithm), the second order diagonal

matrix (S11)e € R™*™ is the m by m identity matrix I,,.

Step 8: Compute the Cost Function J, (0), its Gradient /o (J,) and its
Hessian Hg(J;,).

Step 9: Calculate the optimal ©* using e.g., BGD, SGD, NR.

Step 10: Test the model on an adequate test set and then conduct predictions on
new input using the mean function A that maps n = ©* x to:

h(n) = g—f](@* x) = 0" .

The supervised learning model associated with the univariate Gaussian distribution
coincides with the familiar linear regression model when we consider the short form
basic Cost Function JB). Recall that the basic form has no dependence on either the
regularization parameter A or the input x. In this case, the weight matrix W, is equal to

I, and the regularization matrix L, is equal to Q(+Dxn+1),

To see this equivalence, we rewrite equation (25) as:

24

2019 Bassam El Khoury Seguias ©

J©) = - =1, [a(@a®) — [O) ©20] =

1 1

Soymog2

m =t | 2

L s (4 — Oz — L s ()2
om =t om =t

(@ x(i))Q _ y(z‘) Syl] _

Minimizing JB) over © is equivalent to minimizing 7, (y® — ©21)2 over ©. We
thus retrieve the familiar least-square model.

It also turns out that one can calculate the optimal coefficient matrix ©* in closed form.
Recalling that J®P) is convex in ©, we can find ©* by setting Ve J?) equal 0.
Substituting W, with I,,, Ly with 0*)*(+) T with Y and Dg with © X7 in
equation (30), we get:

Ve (JBP) = L[(©XT — YT) X]

L
m

Setting this Gradient to 0 leads to the normal equation that allows us to solve for ©*
in closed form:

o = (Y7 X) (XT X)!

#i. The Bernoulli (Binomial) distribution: The corresponding probability
distribution is:

ply; ¢) =¢* (1-¢)7¥

where the outcome y is an element of {0,1} and where p(y =1) = ¢ and
ply=0) = (1 —¢). We rewite it in an equivalent form that makes it easier to identify
as a member of the exponential family:

ply; ¢) = ol v In(8) + (1—y) In(1=9) | _ [y In(:25) + In(1-9) |
Step 1: The target matrix Y € {0,1}™*!. In other terms, each training example
i € {1,..,m} has a binary output y associated with it.

Step 2: We identify the following quantities:

e The natural parameter n = ln(%) eR (andso ¢ =)

e The sufficient statistic is T'(y) = y. Matrix T =Y € {0,1}"*! (here, p=1)

The dispersion matrixis p = I, = I, =1

The non-negative base measure is b(y, p) = b(y) =1

The log-partition function maps n € R to:

25

2019 Bassam El Khoury Seguias ©

ain) = —=ln(1—¢) = In(1+e")eR

e The coefficient matrix is a row vector © € R*(+1)

el

Step 3: The function g—; :R — R maps n to 1

Step 4: If needed (e.g., in the case of NR algorithm), the function % R —=R,
e’ !
maps 7 to Tt en?
Step 5: The log-partition vector is given by:
In(1 + %)
Ag = .. e R™
In(1 + ™)

Step 6: The log-partition Gradient matrix is:

e@x(l) e@x(m>

D@:[] ERlxm

1+ €8 7 1 4 00

Step 7: If needed (e.g., in the case of NR algorithm), the second order diagonal
matrix (Si1)e € R™*™ is given by:

B e@z(l) T

(1 + e0s)2 0(2) ! !
6(—):1:
(Si1)e = 0 (1 + eo=)2 0 0
0 0 0 0
e(—)z(m)
I 0 0 . 0 (14 o2]

Step 8: Compute the Cost Function J, (0), its Gradient /o (J,) and its
Hessian Hg (J;).

Step 9: Calculate the optimal ©* using e.g., BGD, SGD, NR.

Step 10: Test the model on an adequate test set and then conduct predictions on
new input using the mean function h (also known as the sigmoid function) that
maps 7 = O*z to:

oa , ., e®® 1
h(n) = 3_77(@ x) =

Note that:
Elylz; ©]=ply=1]2; 0)x1 + ply=0|z; ©)x0 = ply=1]z; O)

Moreover, we know that:

26

2019 Bassam El Khoury Seguias ©

Ely|z; ©]=E[T(y) | z; ©]=h(0"2)
As a result, we conclude that:
ply=1]2;0) =h(O" 2)

This is none else than the familiar logistic regression model where we predict
y =1 whenever h(©*) > 1 and y = 0 otherwise. This classification highlights
the presence of a decision boundary given by the set of inputs x that satisfy
©* z = 0. This is justified by the fact that h(0* z) > 1 < ©* 2 > 0.

11t. The Poisson distribution: The probability distribution with poisson rate A is:

AV e
p(yl; A) =]

The outcome y € N is usually a count of an event occurrence. We can rewrite the
distribution in an equivalent form that makes it easier to identify as a member of the
exponential family:

1 _
ply:)= g e v A

Step 1: The target matrix Y € N™*! In other terms, each training example
i € {1,..,m} has a non-negative integer output y associated with it.

Step 2: We identify the following quantities:

e The natural parameter n = In(A\) € R (and so A\ = €")

e The sufficient statistic is T(y) = y. Matrix T =Y € N™*! (here, p = 1)
e The dispersion matrixis p =1, =1; =1

e The non-negative base measure is b(y, p) = b(y) = i

e The log-partition function maps n € R to:

aln) = X =€ €R

e The coefficient matrix is a row vector © € R¥*(+1)

Step 3: The function g—f; : R — R maps 7 to e

Step 4: If needed (e.g., in the case of NR algorithm), the function gin‘; ‘R — R,
maps 7 to e"

27

2019 Bassam El Khoury Seguias ©

Step 5: The log-partition vector is given by:

6@1(1)
Ag = .. eR™
e@x(m)
Step 6: The log-partition Gradient matrix is:

(1) (m)
D@ _ [6@&: B 6@3}] c Rlxm

Step 7: If needed (e.g., in the case of NR algorithm), The second order diagonal
matrix (S11)e € R™*™ is given by:

e®e 0 0

I O 0 0
(S1)e = 0 0 0 0
0 0 0 o™

Step 8: Compute the Cost Function J, ,(0), its Gradient Vo (J,) and its
Hessian Hg (Jy).

Step 9: Calculate the optimal ©* using e.g., BGD, SGD, NR.

Step 10: Test the model on an adequate test set and then conduct predictions on
new input using the mean function h that maps n = ©* x to:

Note that the range of h is R™, although the sufficient statistic is in N. This is
because the mean function outputs the expected value of the sufficient statistic. So
one would still need to map the expected value outputed by h to an integer in N.

. The Geometric distribution: The corresponding probability distribution is:
ply; ¢) = (1=¢) V¢

The outcome y is € N*. The distribution calculates the probability of having a success
after exactly y trials, where the probability of success is equal to ¢. We rewrite it in an
equivalent form that makes it easier to identify as a member of the exponential family:

s @) = ol 07D B(=6) + (@)] _ ([vIn(-0) + In(1%5))

Step 1: The target matrix Y € (NT)™*! In other terms, each training example
i € {1,..,m} has a positive integer output y associated with it.

28

2019 Bassam El Khoury Seguias ©

Step 2: We identify the following quantities:

e The natural parameter n = In(l1 —¢) € R (andso ¢ = 1 —e")
e The sufficient statistic is T(y) = y. Matrix T =Y € N™*! (p =1)

The dispersion matrixis p=1, =1, =1

The non-negative base measure is b(y, p) = b(y) = 1

The log-partition function maps n € R to:

o . _ ., o
=) =~ =5

e The coefficient matrix is a row vector © € R¥*(+1)

a(n) = —In() €R

1
1—en

Step 3: The function g—f; : R — R maps 7 to

2

Step 4: If needed (e.g., in the case of NR algorithm), the function g—n‘; ‘R — R,
maps 1 to ﬁ

Step 5: The log-partition vector is given by:

e@z(l)
n(ey)
A@ = .. e R™
0z(m)
In(—=)

(1 — o™)
Step 6: The log-partition Gradient matrix is:

1 1
1 — 9™ 7 1 — 0™

Dg = []ERlxm

Step 7: If needed (e.g., in the case of NR algorithm), the second order diagonal
matrix (S11)e € R™*™ is given by:

r e@z(l) _
1= o)z 0 0 0
6(—)1‘(2)
(S1)e = 0 (1 = 0Py 0 0
e@z(m)
L0 ’ 0 e

Step 8: Compute the Cost Function J, (0), its Gradient Ve (J.) and its
Hessian Hg (J;).

Step 9: Calculate the optimal ©* using e.g., BGD, SGD, NR.

Step 10: Test the model on an adequate test set and then conduct predictions on
new input using the mean function h that maps n = ©* x to:

_ Oa 1

h(n) = 3_77<@*) = 1 — & o)

29

2019 Bassam El Khoury Seguias ©

Note that the range of h is R although the sufficient statistic is in N*. This is
because the mean function outputs the expected value of the sufficient statistic. So
one would still need to map the expected value outputed by h to an integer in N*.

v. The Multinomial distribution: The corresponding probability distribution is:
Py o1, 0nr) = TS 070 (1=3j0) ¢)10

Here, 1{y = i} is a function of y that returns 1 if and only if y = 4, and returns 0
otherwise. One can think of this distribution as the probability of y taking a value in
the set {1, ..., k}, with:

dr-1 = ply=(k—-1))
o = ply=k) = 1-3I7 ¢,

We rewrite it in an equivalent form that makes it easier to identify as a member of the
exponential family:

Py Grses Prr) = €M I oV (1= e M]

ol ST Uy=i} In(¢) + Hy=k} In(1-320 &5)] _

ol Tist Hy=i} In(e) + (1-%i5 Hy=i}) In(1-372) &5)] _

[S Hy=i} In(i) + n(1-202) ;)]
e j=1 77

Step 1: The target matrix Y € {1, .., k}™*!. In other terms, each training
example 7 € {1,..,m} has an integer output 1 <y < k associated with it.
Step 2: We identify the following quantities:

e The natural parameter is given by:

_ T _ b1 Or—1 T k—1
n= [771 nk—l] - [ln((1— 25;11 ij)) . ln(< 1_ 25;11 §Z5]>)] €eR

e The sufficient statistic of y is:

30

2019 Bassam El Khoury Seguias ©

Ty)=[Hy=1} .. Hy=k—-1}]"

As a result, the sufficient statistic matrix is given by:

HyW =1} . 1{yW=(*k-1}
T = y . € {0, 1} k=1

Hy™ =1} . 1™ = (k- 1)}
Here, p = (k —1).

The dispersion matrix is p = I, = I;;_;

e The non-negative base measure is b(y, p) = b(y) = 1
e The log-partition function maps n € R to:
a(n) = —In(1-3¥7) ¢;) = In(%)
” 1—- Ej;l ¢j

= (X e + 1) eR

e The coefficient matrix is given by:
or O . 01(n+1)
0 = .. = e RE-1)x(n+1)
@ﬁ_l) Ok-11 - Or—1)(nt1)

Step 3: Vs € {1,..,k — 1}, the function g—;‘s : RF=! — R corresponds to the
following mapping;:

e'ls

_> e —
1 + Z?;ll e

n = [771 n(k—l)]T

Step 4: If needed (e.g., in the case of NR algorithm), Vs, ¢t € {1,..,k — 1}, the

. 2
function % : R¥! — R can be computed as follows:

! - .
— (1+Zk_1enj)2[5steni(1+E§:116773)_e[ns+m]]
Jj=1

where 0, = 1 if s =t and 0 otherwise.

Step 5: The log-partition vector is given by:

In(1 + skl e®ie™)
A@ = .. e R™
In(1 + 25;11 87 =™)

31

2019 Bassam El Khoury Seguias ©

Step 6: The log-partition Gradient matrix is given by:

6[91T$(1)] e[e{x(’")] 7
1+ Ef;ll e[@}—’z(l)] 14 E,I;;ll e[@sz(m)]
De = . - - RiE-1)xm
e S)
1+ 22211 e[@}“z(l)} 14 Ef;ll e[@ﬂlz(m)]_
Step 7: If needed (e.g., in the case of NR algorithm), Vu,v € {1,..,k — 1} the

second order diagonal matrix (Sy,,)e € R™*™ is the diagonal matrlx Whose iith

entry (i € {1,...,m}) is given by:

(Suw)eli = [Bu (1 22 €070) 887 — ol (U0

(1 + E;c;il e[@fx(i)])2

Step 8: Compute the Cost Function J, (0), its Gradient Ve (J.\) and its
Hessian Hg (J;).

Step 9: Calculate the optimal ©* using e.g., BGD, SGD, NR.

Step 10: Test the model on an adequate test set and then conduct predictions on
new input using the mean function h that maps n = ©* z to:

EHE

14 E1111 6[9] @]

®*T
e[k—1 z]

—Tz]

;
1+ shol 9

Note that by definition, we have h(n) = E[T(y) | x; ©]. Substituting the
previously derived expression for T'(y), we get:

E[1{y = 1} ‘ x; @] T B [QTT 2]
1+ 25 11 e[e] @l
6[6221]
E[{y=k—1}|a; O] |1+xht o0)

Observing that:

El{y=1i}; d1,vpn] = 1xd + OXILZ L ¢ = ¢

32

2019 Bassam El Khoury Seguias ©

We get:
] [| BT
b1 ply=1|z; O) 1+ skt o195 @l
Pr—1 ply=(k-1)|z; O) 01T, 2
14 shl 1O 7
i i L] i k- |
This is the familiar softmax regression model. We predict y =i € {1, .., k}
whenever ¢; = maz_, ¢; and where we define ¢y, to be equal to (1 — Z;?;ll b;).

This classification highlights the presence of decision boundaries that delimit k
distinct zones where the i** zone correspond to the set of z vectors for which

o; = maxﬁ?:l 0j.

Note that logistic regression is a special case of softmax regression when k = 2.

7 The multivariate Gaussian distribution case

The multivariate Gaussian distribution is given by:

1 .
ply; 1, %) = ——=c"2
(2m)r[X]

(y—w)T =71 (y—p)

where y € R", p € R" and X is a symmetric positive definite matrix in S, .

Note that the symmetry and positive definiteness of ¥ imply the symmetry and positive
definiteness of ¥7! as we now demonstrate.

e Proof that X! is symmetric: We claim that for any invertible matrix A, it
holds that (AT)™1 = (A™YHT. Indeed, letting I denote the identity matrix, we
have the following chain of equalities:

APA =T =17 = (AT A)T = AT (AT

It ensues that (AT)™! = (A™!)T. By virtue of being positive definite, ¥ is

invertible and we get as a result that (X7)~! = (717, Invoking the symmetric
nature of ¥, we then conclude that ¥=! = (X~1)T. This shows that ¥~ is
symmetric.

e Proof that ¥7! is positive definite: Being positive definite, ¥ exclusively
admits positive eigenvalues. But the eigenvalues of ¥~! are the reciprocals of those
of ¥ and hence are also positive. This in turn implies that ¥~! is positive definite.

33

2019 Bassam El Khoury Seguias ©

We rewrite the probability distribution in an equivalent form that makes it easier to
identify as a member of the exponential family with dispersion matrix:

p(y; 1, %) =

1

o3 W) Gl ST)+ g W R y) - (W ST)]
(2m)"[X]

Being a scalar, the quantity y” 37! u is equal to its transpose pu (3717 y. And
since X! is symmetric, it must be that y? 7! yu = pu? L1 y. Moreover, the
determinant of Y71 satisfies |27 = ﬁ As a result, we write:

>l _ _ _
ply; p, 271 = ‘/|(27r)l ez Wy LW ST) -5 (W BT)]

Step 1: The target matrix Y € R™*". In other terms, each training example
i € {1, .., m} has a multivariate output y € R" associated with it.

Step 2: We identify the following quantities:

The natural parameter vector n = p € RP.

The sufficient statistic is T'(y) = y. Matrix T = Y € R™*P. Note that the
dimension p of the sufficient statistic is equal to the dimension r of y.

The dispersion matrix is A = 7! which is not necessarily a positive
multiple of the identity matrix I,. The inverse of the covariance matrix X is
also usually known as the precision matrix.

Am- €7z WA,

The non-negative base measure is b(y, A) =

The log-partition function maps (1, A) € R? x RP*? to:

= ()2 (5) - ()2 ()

where ¢ : R? — R? is the map that takes n = [.. n,]7 to q(n) = %

We can also compute the derivative of ¢ with respect to 7 :

Oq1 Oq1
om T Omp 1
D = e = —1
(n q) B4y B4y (n) \/5 p
om 7 Onp

The coefficient matrix is © € Rpx(+1)

Step 3: We claim that the Gradient of ¢ with respect to 7 is the map from RP? to
R? that takes n = [y .. n)T to (v, ¢)f =An

34

2019 Bassam El Khoury Seguias ©

To see why, note that if A € RP*P is a given matrix and f : R? — RP maps vector
r=[z; .. 7y’ to f(z) =27 Az, then:

{ flo) =% X5, x5 Ajy, oy As aresult, Vi € {1,..,p}:

of
8$i

- E?zl Ez=1 { 5ij (Ajk :L”k) + (:vj Ajk) 0ik } —
Yo Ypm { A we + 25 Aji b = X5 { (A +A45) 75 }

{ And so: (v, /)T = [g—gfl..aa—?;]T = (A+ ATz

{ We then conclude that: (7, ¢)" = 1 (A+AT)np = Ay

Step 4: We now turn to computing the cost function J (@ A) derived from
conducting maximum likelihood estimation using the multlvarlate Gaussian
distribution. After substituting the relevant parameters in equation (18), we get:

1 v 1 , , . .
T (©.4) = — 5wl {5 @) eT A0 — @) eT Ayl +
1 A

§(y<i>)TAy<i>+§zn PIAT) Y + 5 T (67 85 +A7 A]

We rewrite this more concisely using matrix notation as follows:

1 1
Jiff)(@,A) = ETT{[L xeTae xT - xeTAYT + Y AYT

(32)

41 5 I YA) I,] W +A [Tr(© ©7) + Tr(AAT)]

We have seen earlier that the long form general Cost Function is convex in ©.
Moreover, we showed that if b(y, A) is convex in A, then so will the Cost Function.
We now demonstrate that for the case of the multivariate Gaussian, b(y, A) is
indeed convex in A. To do so, we prove the equivalent claim that —In(b(y,A)) is
convex in A. To see why, note that:

—in(by, A)) = 3 YTAY = SIn(IA) + 3@ a))

Note that the first term is linear in A and hence convex in A. The last term is

independent of A. The second term is a negative multiple of the natural logarithm
of the determinant of a positive definite matrix. To establish the convexity of this
quantity, we first find the Gradient of —3 In(|A]) which turns out to be equal to

35

2019 Bassam El Khoury Seguias ©

—2 A7! (for a proof, the reader can refer to e.g., section 4.A.1 of [1]). We then
compute the Hessian which turns out to be equal to % A~2. This shows that the
Hessian is positive definite which implies that —3 In([A]) is convex in A.

Step 5: We now turn to computing the Cost Function’s Gradient as specified by
equation (19). In order to do so, we first prove some identities involving the
derivative of a Trace.

e Gradient of Tr (3 X ©T A © XT W,):

In what follows, the quantity d;; evaluates to 1 if i = j and 0 otherwise. First
of all, note that:

1
Tr (3 X oefAoe XTw,) = Z Xij Orj prt O Xom (Wa)i

i7j7k7l7m7n

Vu € {1,..,p} and j € {1,..,(n+ 1)}, we can express the (uj)" component of
its derivative with respect to © as follows:

{v@ Tr(%X@TA@XTWz” =

uv

0
90 Xij ij Pkl elm Xnm (Wz)nz -

i7j7k7l7m7n

N | —

1
5 Z [Xij 5uk 51}]’ Pkl elm Xnm (Wx)nz

i7j7k7l7m7n

+ Xij ekj Pt Oul Ovm Xnm (Wx)m] =

1
5 > [Xaw put O X (Wi

i’j’k7l7m7n

1
s Z [pul elm Xnm (Wx)m Xz

i’j’k7l7m7n

+ pru Orj Xij (Welni Xno | =

(AOXTW, X)), + % (AMexTwWIX) =

uv

N | —

(A XT W, X)

36

2019 Bassam El Khoury Seguias ©

(since A and W, are symmetric.)

As a result, we conclude that:

Ve Tr(%X@TA@XTWx>:A@XTWIX (33)

Similarly, we can follow the same procedure to find that:

(6 xXTw, xe’) (34)

1
2

A TT(%X@TA@XTWx> =

e Gradient of Tr (X ©TA YT W,):

We first notice that:

Tr (Xl AYTw,) = Z Xij Orj prr Yo (W) mi

i7j7k7l7m

Since A is symmetric, we can equivalently write this equality as:

Z (Xij Oj ot You Wa)mi + Xij Ok pie You (Wa)mi)

i,3,k,l,m

We then apply the same logic as before and demonstrate that:

Vo Tr(XO"AY W,) = AY"TW, X (35)

And that:

Va Tr(XOAY W,) = - (6X"W,Y + Y"W, X0")| (36)

N | —

e Gradient of Tr (Y A YT W,):

Given the lack of dependency on O, it is obvious that:

Ve Tr(YAYTW,) =0 (37)

Furthermore, observing that W, is symmetric and applying the same
methodology that we previously used allow us to readily show that:

37

2019 Bassam El Khoury Seguias ©

1
VA Tr(YAYTWx):iYTWxY (38)

e Gradient of T (1 In((27)? |A7Y]) I, W,):

Here too, independence of © justifies that:

Ve Tr (% In((2m)" [A7Y) I, W,) =0 (39)

On the other hand, we have:

VA Tr(%ln(@r)” A7) 1, Wz) _
Va (%ln((2m)? [AH]) Tr(W,)) =
Tr(We) X Va (%ln((2m)P |A1\)> =

Tr(W.) X Va (%ln(|/\1‘)) = S Tr (W) x va (In(1A])

We stated earlier that 575 (In(|[A])) = A™! (see e.g., section 4.A.1 of [1]).
As a result, we conclude that:

o Tr (% In((20 (A7) 1, Ww> _ —% TH(W,) AT (40)

e Gradient of Tr(© ©T) and Tr(A AT):

Clearly:

Va (Tr(©0")) = ve (Tr(AA")) =0 (41)

Furthermore, we can apply the same calculation as before to conclude that:

Vo (Tr(067)) = 20 (42)

va (Tr(AAT)) = 2A (43)

38

2019 Bassam El Khoury Seguias ©

The Gradient of the Cost Function can now be readily computed as:

Vo (JEM) (©,4) = — (AOXTW, X — AYTW, X) + 20| (44)

1
m

1
va (L5 (0,0) = %(G)XT w,xe' —ex"w,Y

~-Yr'w, xel + YIW, Y — Tr W) A™') + AA

Step 6: With the Cost function and its gradient thus derived, we can use
numerical algorithms to find the optimal ©* and A* that minimize J:E’L)\G). In what
follows we illustrate how this can be done using BGD. Recall that R denotes the
learning rate matrix that was previously introduced in section 5, iter is an
iteration count variable and mazx-iter is the maximum number of allowed
iterations before testing for convergence:

) « Initialize()
Aewrr) « Initialize()
(They could be initialized to e.g., 0P*(™*1) and 0P*P respectively).

For (iter < maz-iter)

{
@(new) — @(cu'r"r) - R Vo curn) (Jz(f;\G)) ((,_)(cm‘r)’ A(cm‘r))
A(new) — A(curr) - R T Adeurn) (J:IE’L)\G)) ((_)(curr)’ A(curr))
@(cur‘r) «— @(new)
A(curr) — A(new)

Update all the © and A-dependent quantities including:

It is important to note that the entries of matrices ©*) and A®) must get
simultaneously updated before they can be used in the next iteration.

Step 7: Test the model on an adequate test set and then conduct predictions on
new input using the mean function h that maps (n,A*) = (©*z, A*) to:

39

2019 Bassam El Khoury Seguias ©

h(n,A) = A1 (W c)T = A’lAn =n = 0"z

It turns out that one can calculate the optimal coefficient matrix ©* and the optimal
dispersion matrix A* in closed form whenever the Cost Function is expressed in its long
basic form JP). In other terms, whenever we assume that the weight matrix W, is
independent of z and equal to the (m x m) identity matrix, and that the regularization
matrix is independent of A and equal to the ((n + 1) x (n 4+ 1)) 0 matrix. In this case,
equation (44) yields:

Vo (157 (©,0) = — (AOXTX — AYTX)

1
m
1
va (JEPY (8,0) = 5o (0xXTxel —ex'y
~Yr'xel + Y'y — mA™)

Recall that the Cost Function is convex in ©, and in A. We can therefore find ©* and
A* by setting the Gradient with respect to © and to A to 0. By doing so, we get:

1
Vo (J5) =0 <= —A(0"XTX —YTX) =0

m

Since A is positive definite, this is equivalent to (©* X7 X — Y7 X) =0. We then
retrieve the familiar normal equation we obtained in the univariate case:

o =Y" x (XxT X)!

Similarly, by setting </x (J:EiB)) = 0 we find:

(A*)—l — (@ XT . YT) (@ XT . YT)T

1
m

8 Python implementation

This section provides a python script that implements the GLM Supervised Learning
class using matrix notation. We limit ourselves to cases where the dispersion matrix is a
positive scalar multiple of the identity matrix. We emphasize that the code is meant for
educational purposes and we recommend using tested packages (e.g., Scikit-Learn) to
run specific predictive models.

40

2019 Bassam El Khoury Seguias ©

import sys;
import math;
import numpy as np;

THE GLM CLASS DEFIMES AW INSTANCE OF A PREDICTION PROBLEM.
IN ORDER TO DEFINE AN INMSTANCE, ONE SHOULD PROVIDE THE FOLLOWING:

—————— ¥_train (m by (n+1l}): Training set input (including all-1 column)

m is number of training examples and n is

number of features.

—————— Y_train (m by r): Qutput matrix for the training set

m is number of training examples and r is

the output's dimension.

—————— reg_model: String defining the probability distribution to be

used for regression / classification. We

include the following (but can be expanded

further): "normal", "binomial", "poisseon”,

“geometric”, "multinomial”.

—————— p: Refers to the dimensionm of the sufficient stastic. For most

examples used here, it is egual to 1. For

multinomial classification it is equal to

one less than the number of classes.

—————— regu_lambda: Refers to the regularization parameter lambda. it is

a scalar that can be set to 8.

—weight_flag: Should be set to 1 if one wishes to conduct weighted

regression/ classification. It relies on

the familiar bell-shaped function. In this

case, the data point where prediction is to

be made defines the weights to be used. As

a result, that specific data point must be

included as an input to the fitting process

as we later describe in the "fit" method.

If no weights are needed, set flag to @.

—weight_tau: Holds the bandwidth wvalue tau of the weight function.

It is set to 1 by default and is only used

EEE EEEEEREEEEEEEEEEEREEREEEEEEREEREEEEFEER EE L

when the weight_flag is set to 1.

class Glm:

def

def

def

def

def

1nit {seif X traln, Y tra1n, reg_model, p, regu_lambda,
: . weight_flag, weight_tau = 1):

self x traln = X traln
self. ? train = ? train
self.reg_mndel = reg_model
self.p =p
self.regu_lambda = regu_lambda
self.weight_Tlag = weight_flag
self.weight_taw = weight_tau

display_X_train(self):
print "in The training set input matrix is:\n", self.X_train

display_¥_train(self):
print "ln The training set owtput is:\n", self.¥Y_train

display_reg_model{self};
print "in The model is a:

, self.reg_model, " distribution"

display_regu_lambdalself):
print "ln The regularization parameter is:

, self.regu_lambda

41

2019

Bassam El Khoury Seguias ©

def display_weight_flag(self):

it [self.weight_flag == 1):
print "\n The current prediction instance is weighted"

elif (self.weight_flag == @}: _ _ _
print "\n The current prediction instance is not weighted"

else: print "\n Flag valve not recognized. Please insert 1 or @"

det display_weight_taulself):

if [self.weight_flag == 1}:
print "\n The weight function bandwidth is ", self.weight_tau

else: print "\n The current prediciion is not weighted."

det get_miself):

return self.X_train.shape(8]

def get_ni{self]:

return self.¥_train.shapell] - 1

det get_plself]:

return self.p

def weight_bell_funciself, x, training_1i):

def

return math.expl{-np.dot{{self.X_train(training_i,::] -
(self.¥_train(training_1i,::] - .
float(2=(self.weight_tauss2)

o

generate_W{self, x):
m= self.get_mii
W = np.eyeim, ditype=np.floated)
it (self.weight_flag == 1}:
for i in rangelm}:
Wli,i] = self.weight_bell_funcix, i)

return W

det generate_L{self):

n = self.get_ni)
L = self.requ_lambda = mp.eyel(n+l, dtype=np.float64)
return L

42

2019 Bassam El Khoury Seguias ©

def generate_Ti(self):

p = self.get_pi)
m = self.get_mi)
T = np.zerosiim,p}, dtype=np.floatfd)

if (self.reg_model in ["normal", "binomial", “poisson”,
"geometric®]):
T = self.¥_train

elif (self.reg_model == "multinamial™}:
for 1 in rangeim}:
for j in rangelpl:
iflint{self.¥_train[i,d8]) == j):

Tli,i]l =1
else:
print "No valid model has been inserted. System exiting now"
sys.exitl()
return T

TO GEMERATE THE REMAINING RELEVANT MATRICES, THE GLM CLASS MAKES USE OF

EERELECE R R E R R R R R R R R R R R

QUANTITIES BUILT OFF THE LOG-PARTITION FUNCTIOM AND ITS DERIVATIVES.
THE LOG-PARTITION FUMCTION IS PROBABILITY DISTRIBUTIOM-DEPEMDEMNT.
——a_Tuncieta): Returns the wvalue of the relevant log-partition

function evaluated at eta. For most of the

encoded distributions, the first derivative

is a function from R to R. For the case of

the multinomial, it is a map from R*p to R.

——a_Tirst_derivi{eta, index}: Returns the value of the partial

derivative of the log-partition function
with respect to the index's variable and

evaluated at eta. For most of the encoded

distributions, the first derivative is a

function from R to R. For the case of the

multinomial, it is a map from R™p to R.

——a_second_deriv({eta, indexl, index2): Returns the wvalue of the 2Znd

partial derivative of the log-partition
function with respect to the 2 indexes'

variables indexl and index2 evaluated at

eta. For most of the encoded distributions,

the second derivative is a function from R

to R. For the case of the multinemial, it

is a function from R*p to R.

det a_funciself, eta):

g = self.get_pl)
if (self.reg_model == "normal™):
return eta=+2/float(2}

elif iself.reg_model == "binomial™):
returnm math. log{1l+math.expletal)

elif iself.reg_model == “poisson”):
return math.expletal

elif (self.reg_model == “geomefric"):
return math. logimath.expleta)/float(1-math.expletall)

elif (self.reg_model == “multinamial™}:
val = @

for j in rangelp}:
val += math.expletaljl)

return math. logival + 1}
else:

print "No valid model has been inserted. System exiting now"
sys.exiti)

43

2019 Bassam El Khoury Seguias ©

det a_first_deriviself, eta, index):
p = self.get_pi)

it (self.req_model == "normal")
return eta
elif (self.reg_model == "binomial"):
return math.expletal/float(1+math.expleta))
elif {(self.reg_model == "poisson"):
return math.expletal
elif (self.reg_model == “geomeiric"):
return 1/float(1-math.expleta))
elif (self.reg_model == “multinomial"):
denom = 1

for j in rangelp}:
denom += math.expletalil)

return math.expletalindex])/float(denom)
else:

print "No valid model has been inserted. System exiting now"
sys.exit()

det a_second_deriviselr, eta, indexl, index2):
g = self.get_pi)

if (self.reg_model == "normal”):

return 1
elif (self.reg_model == "binomial"):

return math. Expieta}fflnat[[l+math expleta) J==2)
elif (self.reg_model == “poissan"):

return math.expletal
elif (self.reg_model == “geomeiric"):

return math. Expieta}fflnat[[l—math expleta) J==2)
elif (self.reg_model == “"multinomial™):

denom = 1

for j in rangelp}:
denom += math.expletalil)

val = -math.expletalindexl]+etaindex2])/ loat (denoms=2]

if (indexl == index2):
val += math.expletalindexl] }/float({denom)

return val

else:
print "No valid model has been inserted. System exiting now"
sys.exit()

det generate_A(self, theta):
m self.get_m:i

A = np.zeros(im,1}, dtype = np.floate4)

for i in range (m}:
Ali] = self.a_funcimp.dot(self.X_train(i,::],theta.T).T]

return A

44

2019 Bassam El Khoury Seguias ©

def generate_D(self
p= self.get_pij
m= self.get_mi)
0D = np.zeros({{p,m},dtype = np.floatc4)

thetal:

for i in rangeip):
for j in rangeim}:
D[i,jl= self.a_first_deriv(
no.dot(self.¥_trainlj,::],theta.T}.T, il

return D

def generate_5_uk(self, theta, u, ki
m = self.get_mi{)
S_uk = np.zeros{{m,m},dtype = np.floatb4)

for i in range(m):
5_uk[i,i? = self.a_second_deriv(
no.dot(self.¥_trainli,::],theta.T}.T, u, ki
return 5_uk;

ost_Grad_Hess(self, theta, x):
self.get_mi()

self.get_ni)

self.get_pl)

np.onesiim,1), dtype = np.fTloate4)
self.generate_W (x}
self.generate_L{}
self.generate_TI}
self.generate_Altheta})

€
m
n
B
o
H
L
T
A
b = self.generate_D{thetal

cost = float(((0.T).dot{W}.dot(A) -
np.tracetself.¥_train.dot(theta.T).dot(T.T).doti{W}))/Tloatim)
+ self.regu_lambdasnp. trace(theta.dot(theta. T}/ float(2]]
gradient = ({((D - T.T}.dot{W}.dot(self.X_train))/Tloatiml +
theta.det(L))

hessian = np.zeros{{px(n+l}, p=(n+l)), dtype = np.float64]
H_uk = np.zerosii{p,p}, dtype = np.fluatﬁ#{

for u in rangeip):
for k in rangelp}:

5 uk = self.generate_S_uk(theta, u, kl;
H uk = ((self.X_train.T).dot(5_uk).dot(W).dot(
self.¥_train) }/Tloatim)
if (u == k}:
H_uk += L

hessian[weln+l): (u+ll=(n+l), ke(n+l):(k+1)=(n+1)] = H_uk

return [cost, gradiemt, hessian]

45

2019 Bassam El Khoury Seguias ©

def stoch_Grad(self

X, 1, theta}:
self.get_mij

m=

n = self.get_nt)

p = self.get_pi)

T = self.generate_T{}

modified_Grad = np.zerosi{{p,n+l), dtype = np.float64)

for j in rangeip):
for K in range({n+l}:
temp = {(self.a_first_derivinp.dot(
self.X_trainli,::], theta.T).T, jl=self.¥_train(i,k]-
self. X _train(i,k]=T[i,j]]
if (self.weight_flag == 1):
temp = temp % self.weight_bell_funcix, i)

modified_Grad(j,k] = (temp/floatim) +
self. regu_lambda=thetalj,k])

return modified_Grad

def initialize_Theta(self}:
n = self.get_ni)
p = self.get_pi)

return np.zeros((p,n+l}, dtype = np.floatGd)

det wectorize(self, matrix}:
return matrix. flatten(}.T

def matricize(self, vector, mat_rows):
it ((wector.shapel@®] % mat_rows) == @):
return np.reshape{vector, [(mat_rows, vector.shape[@]/mat_rows))

else:
primt "Matrix dimensions not compatible with wector length.
print "System exiting now"
sys.exit()

46

2019 Bassam El Khoury Seguias ©

————— -MR(x, p, m, theta): Runs one iteration of MR. The learning rate
here is automatically calculated and
dymamically changed for optimality. Except
for R, all inputs / outputs are as before.

ELEC R R

def BGD(self, %, p, n, R, theta):
gradient = self.cost_Grad_Hess(theta, =)[1]
theta -= np.dot(R, gradient}

[cost, gradient, hessian] = self.cost_Grad_Hessitheta, x)

return theta, cost, gradient, hessian

det SGD(self, x, p, n, m, R, theta):
for i in rangeim}:
theta = theta - np.dot{R, self.stoch_Grad(x, i, theta))

[cost, gradient, hessian] = self.cost_Grad_Hessitheta, x)

return theta, cost, gradient, hessian

""'NOTE ON USING NR FOR MULTINOMIAL CASE:

There are convergence problems whenever Newton's method is used on a
multi-class regression problem with mare than 2 classes and 15 hence
not recommended. A modified Hessian could be used as articuwlated inm
http://people.stat.sc.edufgreqorkb/Tutorials/MultlogReg_Algs.pdf

def NR(self, %, p, n, thetal:
yectorized_theta = self.vectorize(theta)
[gradient, hessian] = self.cost_Grad_Hess(theta, =) [1:3]
vectorized_gradient = self.vectorizelgradient)

theta = self.matricizelvectorized_theta - np.dot(
np. linalg.pinv(hessian), vectorized_gradient), p)

[cost, gradient, hessian] = self.cost_Grad_Hessitheta, x)

return theta, cost, gradient, hessian

THE 3 METHODS BELOW COMPUTE THE OPTIMAL THETA AND COMNDUCT PREDICTIONS.

—————— find_Optimal_Thetalalgorithm, x, iter_max, alpha = 8.81):

The algorithm is a string indicating “BGD",
'SGD", or "MR".

¥ is the input on which prediction will be
conducted. It is encoded as a column
vector. Note that theta's dependence on
¥ is only applicable in the case of a
weighted learning.

iter_max is the max number of iterations
for the algorithm.

alpha is the learning rate (relevant to
BGD and SGD only)

The method returns 2 values:

1} The updated theta returned by the
algorithm after iter_max iterations.

2} A list containing the value of
the cost function after each
iteration (useful in case we want
to plot the cost value vs. iterations
and check for convergence)

—————— predict{x, theta): Applies the corresponding predictor based
on the chosen probabilistic model x is the
input point represented as a column vector.

—————— fitlalgorithm, X_predict, iter_max, alpha = 8.81)

The algorithm is a string indicating "BGD",
'SGD", or "NR".

X_predicted is the input matrix {(can be a
vector in case of single input or a
matrix in case prediction is conducted
on many input vectors. ¥_predicted is
augmented with the all-1 column and
has the same structure as X_train.

R R R R R E R R R EEEEEEEREEEREEEEEEE EE-EEEE R

47

2019 Bassam El Khoury Seguias ©

def

def

find_Optimal_Thetalself, algorithm, x, iter_max, alpha = @.81):

p = self.get_pi)
n = self.get_ni)
m = self.get_mi)
R = np.eyeip,p, dtype = np.floate4) = alpha;

theta = self.initialize_Thetal)

cost = [B] = iter_max
iter_count = 8

it (algorithm == "BG0"):
whileliter_count < iter_max):
theta, cost[iter_count] = self.BGD(x, p, n, R,
theta) [8:2]
iter_count += 1

elif (algorithm == "SG0"}:
whileliter_count < iter_max):
theta, costliter_count] = seif.SGD(x, p, n, m, R,
theta) [B:2]
iter_count += 1

elif (algorithm == “NR"}:
whilefiter_count < iter_max):
theta, costliter_count] = seif.NR(x, p, n, thetal [@:2]
iter_count += 1

else:
print "No valid model has been inserted. System exiting now"
sys.exitl]

return theta, cost

predictiself, x, thetal:
p = self.get_pii
predicted = np.zeros{{p,1},dtype = np.floatfd)

for i in rangeip):
predicted[i,8] = self.a_first_deriv(np.dotitheta,x), 1)
if (self.reg_model in ["normal", "poisson", "geometric"]):
return predicted(@,@];
elif (self.reg_model == "binomial"):
return predicted(@,@] = 8.5

elif (self.reg_model == “multinomial"):
max_val = predicted.max(};
sum_val = predicted.sum(};
max_index = np.argmax|{predicted)

if {max_wval = [l-sum_wvall}
return p

else:]
return max_index

48

2019 Bassam El Khoury Seguias ©

def fit(self,algorithm, X_predict, iter_max, alpha = @8.81):
L = % _predict.shape[@]
Y_predict = np.zerosi{({Ll, 1}, dtype = np.floatb4)
if [self.weight_flag == @}:
theta_ocptimal, cost = self.find_Optimal_Thetal
algorithm, ¥_predict.T[::,8], iter_max, alpha)
Tor element in rangell}:
¥_predict [element,@] = self.predict(
¥_predict.Tl::,element], theta_optimal)
return theta_optimal, cost, Y_predict

elif (self.weight_flag == 1}:
theta_optimal = [?
cost = []
Tor element in rangelli:
theta_new, cost_new = self,find_Optimal_Thetal
algorithm, X¥_predict.T[::,element], iter_max, alpha)

theta_ocptimal.append(theta_new);
cost.append{cost_new}

¥_predict [element,@] = self.predict(
¥_predict.T[::,element], theta_optimallelement])

return theta_optimal, cost, Y_predict

References

[1] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[2] Karl Gregory. Multinomial logistic regression algorithms, 2018.

[3] Bent Jorgensen. Exponential dispersion models. Journal of the Royal Statistical
Society, 49(2):127-162, 1987.

49

