
Bitcoin
Elliptic Curve Digital Signature Algorithm

(ECDSA)

Bassam El Khoury Seguias
BTC: 3FcVvBZwTUkUrcqJd16RcjR42qT2tDWHWn

September 8, 2018

1 Introduction

Simply stated, a bitcoin transaction is a transfer of spending control between differ-
ent parties over a pre-specified amount of satoshis. A satoshi is the smallest fraction of
a bitcoin and is equivalent to BTC 10−8. In order to successfuly complete said transfer,
the sender must demonstrate that she is the rightful owner of the satoshis she wishes
to spend. Such a proof is imperative as it allows the different nodes on the network to
reach an agreement regarding the validity of the transaction and as a result, facilitate its
inclusion in the blockchain.

At the time of writing, bitcoin’s proof of ownership is encapsulated in a particular type
of digital signature known as the Elliptic Curve Digital Signature Algorithm (ECDSA).
It is a variant of the Digital Signature Algorithm (DSA) that relies on Elliptic Curve
Cryptography (ECC).

In the first section, we introduce the DSA scheme, prove its correctness, and discuss
some of its security properties. In particular, we point out that as of the time of writing,
and despite its prevalence in various cryptographic settings, we do not know of any valid
security proof of DSA in the random oracle (RO) model. However, we highlight that
slight variations of it can be proven to be secure.

In the second section, we introduce the ECDSA scheme and prove its correctness.
Later on, we present a python-based implementation to further elucidate its building
blocks. We also describe how an ECDSA signature gets typically encoded within a
bitcoin transaction. Finally, we highlight some of the scheme’s potential shortcomings
including the absence to-date of a security proof in the RO model, its susceptibility to
being malleable, and its non-linear design that hinders an efficient implementation of
multisignature transactions.

1



2018 Bassam El Khoury Seguias c©

In order to better understand the material contained herein, we recommend that the
reader familiarizes himself with the necessary prerequisites fleshed out in the following
three posts:

1. Groups and Finite Fields

2. Elliptic Curve Groups

3. Digital Signatures and other Prerequisites

2 Digital Signature Algorithm (DSA)

The invention of the Digital Signature Algorithm (DSA) is attributed to David W.
Kravitz [9] who used to work for the National Security Agency (NSA). The legitimacy
of this invention has been contested by Claus Schnorr (the inventor of the Schnorr sig-
nature scheme), who asserted that DSA is covered in another patent of his [12]. Readers
interested in the claims and counterclaims surrounding the origin of DSA can refer to
e.g., [2].

The DSA scheme is built on the finite fields Zq and Zp, where q and p are two large
prime numbers of respective bit-lengths N and L, and such that q is a divisor of p − 1.
We can think of N as the scheme’s security parameter. Let g be an element of order q
in the multiplicative cyclic subgroup (Z∗p, ⊗p). One way of finding such a g consists in

letting g ≡ a(p−1)/q (mod p), for arbitrary a ∈ (Z∗p, ⊗p) such that a(p−1)/q 6= 1 (mod p).
To see why this construction works, note that:

• By Lagrange’s theorem, we know that ∀a ∈ (Z∗p, ⊗p), order(a) divides p − 1. Let

order(a) ≡ m = p−1
d

for some integer d ≤ (p− 1).

• We then have gq ≡ a(p−1) ≡ (am)d ≡ 1 (mod p). This guarantees that order(g)
must be a divisor of q. But since q is prime, it must be that order(g) is either equal
to q or equal to 1.

• If order(g) were equal to 1, we would have a(p−1)/q ≡ g = g1 ≡ 1 (mod p). But
by definition, we required that a(p−1)/q 6= 1 (mod p). As a result, it must be that
order(g) = q.

Similarly to other digital signature schemes, we define DSA as a set of three algorithms:

• The DSA key generation algorithm G. On input 1N , it produces a pair (x, y)
of matching private and public keys where x is a randomly chosen element in Z∗q
and y ≡ gx (mod p). The algorithm is modeled as a PPT Turing machine.

• The DSA signing algorithm Σ. Suppose a user with private and public key pair
(x, y) decides to sign a message m. Let H be an appropriate hashing function (e.g.,
SHA-256) and let

t : {0, 1}∗ −→ ∪Nl=1 {0, 1}l

be the truncation function mapping strings of arbitrary length to strings of length
at most N and such that:

2



2018 Bassam El Khoury Seguias c©

– It acts as the identity map if the input string is of length at most N

– It outputs the N least significant bits of its argument otherwise

Σ proceeds as follows:

1. Let z = t ◦ H(m)

2. Select a random element k ∈ Z∗q. We point out that it is crucial to select a
different random k for each signature instance. Otherwise, an adversary
could use two signatures sharing the same k to deduce the common value
and subsequently break the signer’s private key as we explain later on.

3. Set r ≡ (gk (mod p)) (mod q). If r = 0, go back to the previous step and
choose another random k.

4. Compute s = k−1 × (z + (x× r)) (mod q). Here, k−1 is the mutiplicative
inverse of k in modulo q arithmetic and we have previously seen in the
prerequisite sections how to compute it efficiently using the Extended
Euclidean Algorithm. If s = 0, go back to the first step and choose another
random k.

Σ finally outputs a signature σ(m) ≡ (r, s). The algorithm is modeled as a PPT
Turing machine.

• The DSA verification algorithm V . Given a signature σ, a message m, and
the public key y of the presumable signer, V verifies the validity of σ(m) by
checking the following:

– If r /∈ Z∗q or s /∈ Z∗q, V outputs False.

– Otherwise:

{ Compute u = (t ◦ H(m))× s−1 (mod q) and v = r × s−1 (mod q) where
s−1 is the multiplicative inverse of s in modulo q arithmetic.

{ Compute w = (gu × yv (mod p)) (mod q)

{ If w = r, then V outputs True. Otherwise, it outputs False.

V is a deterministic algorithm as opposed to probabilistic.

Correctness of DSA The DSA scheme satisifies the correctness property. In other
words, any signature generated by Σ will cause the verification algorithm to output True.
To see why, let σ(m) ≡ (r, s) be an appropriate signature on message m. First note the
following chain of implications:

s = k−1 × (z + (x× r)) (mod q) ⇒

k × s = (z + (x× r)) (mod q)⇒

k = (z + (x× r))× s−1 (mod q)⇒

k = [(z × s−1) (mod q) + (x× r × s−1) (mod q)] (mod q)

3



2018 Bassam El Khoury Seguias c©

Recalling that order(g) = q, and noting that for some appropriate integer α we have

[(z × s−1) (mod q) + (x× r × s−1) (mod q)] = αq + k, we get:

gk = gαq × gk (mod p) = g(z×s−1) (mod q) × g(x×r×s−1) (mod q) (mod p)

= gu × g{x ×[(r×s−1) (mod q)]} (mod q) (mod p)

Similarly, for some appropriate integer α′, we can write:

x × [(r × s−1) (mod q)] = α′q + {x × [(r × s−1) (mod q)]} (mod q)

Using one more time the fact that order(g) = q, we get:

gk = gu × (gx)(r×s−1) (mod q) (mod p) = gu × yv (mod p)

Upon verification, algorithm V computes w = (gu × yv (mod p)) (mod q) and concludes
that w = (gk (mod p)) (mod q) = r, based on the previous equality. This result shows
that the output of Σ satisfies the verification algorithm V hence demonstrating the
correctness of DSA.

Security of DSA: The importance of the randomness of the parameter k. A
necessary condition for the DSA scheme to be secure is for the parameter k to be used
once per each signature instance. Indeed, if this were not the case, one would be able to
derive the private key x of the signer. To see why, suppose that σ(m1) ≡ (r1, s1) and
σ(m2) ≡ (r2, s2) are two signatures generated by the same signer with private key x and
such that k1 = k2 = k. We write:

s1 − s2 = k−1 × [z1 + (x× r1)− z2 − (x× r2)] (mod q)

By design of Σ, we have r1 ≡ (gk (mod p)) (mod q) = r2. We then get:

s1 − s2 = k−1 × (z1 − z2) (mod q)

This allows us to solve for the parameter k as follows:

k = (z1 − z2)× (s1 − s2)−1 (mod q)

Finally, note that Σ mandates that s = k−1 × (z + (x× r)) (mod q). This implies that
x = [(k × s)− z]× r−1 (mod q). Consequently, one can retrieve x by using either
signatures (s1, r1) or (s2, r2), the hash of the corresponding message H(m1) or H(m2),
and the common value k.

Security of DSA: A note on existential unforgeability. A security proof for a
digital signature scheme is essentially a proof of resilience against existential forgeries in
the adaptive chosen-message setting (EFACM). The rather odd observation is that
despite the widespread adoption of DSA, there is no known proof of its security in the

4



2018 Bassam El Khoury Seguias c©

RO model. Typically, such proofs rely on a reduction technique that transforms a
hypothetically successful forgery attack into a solution to a computational problem
believed to be hard (e.g., finding discrete logarithms over certain finite groups).

Before proceeding further, we recommend that the reader familiarizes himself with
the content of the following two posts for a better understanding of the logic outlined in
this section:

• Digital Signature and other Prerequisites to learn more about digital signatures,
forgeries, and security proofs.

• Pointcheval & Stern’s Generic Signature Scheme to see the reduction technique in
action as it applies to e.g., the Schnorr signature scheme.

The belief that a DSA security proof may be difficult to construct rests on our
inability to date to successfully leverage the reduction model (RM) in that respect.
However, it is important to note that the absence of a proof at the time of writing does
not imply that a proof does not exist. In what follows, we attempt to argue why a DSA
security proof based on RM may be difficult to devise. To do so, we will need to revisit
the foundational steps of the model as outlined in the aforementioned posts.

Recall that RM applies a reductio ad absurdum argument that starts by assuming
that the signature scheme is not secure i.e., there exists a PPT adversary A such that:

Pω,r,H[A(ω)H,Σ
H(r) succeeds in EFACM ] = ε(N)

where ω is A’s random tape, r is the random tape of DSA’s signing algorithm Σ (not to
be confused with the r that appears in ECDSA’s signature), H is the random oracle, N
is DSA’s security parameter and ε a quantity non-negligible in N.

Subsequently, the model applies a series of steps that culminate in the extraction of a
solution to a problem thought to be computationally hard e.g., finding the private key x
associated with a given public key y. In DSA, one way of solving for the key consists in
devising two distinct valid signatures σ(m1) ≡ (r1, s1) and σ(m2) ≡ (r2, s2), leading to a
linear equation in x. Conditions C1 and C2 below are jointly sufficient for this to be
possible:

C1) gu1 × yv1 = gu2 × yv2 (mod p)

C2) v1 6= v2

To see why, substitute y with gx and write C1 as gu1+xv1 = gu2+xv2 (mod p). Since
order(g) = q, this implies that u1 + xv1 = u2 + xv2 (mod q). C2 would then allow us to
solve for x = (u1 − u2)× (v2 − v1)−1 (mod q).

In what follows, we derive necessary conditions for C1 and C2 to hold. We then argue
why applying RM to the DSA scheme does not imply with certainty that these
necessary conditions actually hold. This means that we cannot imply with certainty

5



2018 Bassam El Khoury Seguias c©

that C1 and C2 hold, leading us to conclude that solving for x may be difficult after all.
We reiterate that we are not arguing that a security proof for DSA is not possible, but
rather that such a proof may be difficult to achieve using the reduction technique.

First, since both signatures are valid, the verification equations guarantee that:

(gui × yvi (mod p)) (mod q) ≡ wi = ri ≡ (gki (mod p)) (mod q) , for i = 1, 2

As a result:

C1 ⇒ r1 = r2 ⇐⇒ (gk1 (mod p)) (mod q) = (gk2 (mod p)) (mod q).

Consequently, k1 and k2 must exhibit a certain relationship for the first condition to
hold. With overwhelming probabilty, two randomly chosen parameters k1 and k2 will
not satisfy this equality.

Since C1 ⇒ r1 = r2, and since vi = ri × s−1
i (mod q), for i = 1, 2, we can write:

C1 ∩ C2 ⇒ (r1 = r2) ∩ (s1 6= s2)

We also know that si = k−1 × (zi + (x× ri)) (mod q) for i = 1, 2. This yields:

(r1 = r2) ∩ (s1 6= s2) ⇒ (k1 6= k2) ∪ (H(m1) 6= H(m2))

The takeaway is that to be able to effectively use the reduction technique to solve for x
in the case of DSA, one will possibly need to ensure that valid signatures σ(m1) and
σ(m2) satisfy the following at a minimum:

1. (gk1 (mod p)) (mod q) = (gk2 (mod p)) (mod q), and

2. H(m1) 6= H(m2) or k1 6= k2 .

We deliberatly used the term ”possibly” and the justification is two-fold:

a In the above, we limit ourselves to a particular type of computationally difficult
problem, namely solving a discrete logarithm over a multiplicative cyclic
subgroup. Nothing prevents anyone from considering other hard problems for
which C1 and C2 could become obsolete.

b Conditions C1 and C2 were sufficient to solve for x but not undoubtedly necessary.

In what follows, we apply the remaining steps of RM and for argument’s sake, we
assume that steps two and three hold. In other words, we assume that we are able to:

• Build an adequate simulator S(r′) where r′ is the simulator’s random tape.

• Show that the probability of faulty collisions in this simulated environment is
negligible.

In the fourth step, one would show that an adversary that can forge a signature, is also
capable with non-negligible probability of creating a second forgery distinct from the

6



2018 Bassam El Khoury Seguias c©

first one. Most importantly, the two forgery attacks would behave in a similar way up
to a certain well-defined event. Formally, one would show that the following quantity is
non-negligible in N :

PH[A(ω∗)H,S(r′∗) succeeds in EFACM ∩ (ρβ 6= ρ∗β) | (ω∗, r′∗,H∗) is a succesfull first
forgery, and (ρi = ρ∗i ) for i ∈ {1, ...β − 1}]

When producing its first forgery (ω∗, r′∗,H∗), the adversary A is assumed to make a
number n of queries to random oracle H. We denote the ith query as qi and its
corresponding random oracle reply as ρi (i.e., ρi ≡ H(qi), i = 1, ..., n). The second
forgery is created through a process known as an ”oracle replay attack” and consists of:

• Using the same random tape r′∗ of the simulator S used in the first attack.

• Using the same random tape ω∗ of the adversary A used in the first attack.

• Ensuring that the replies of the random oracle H queried in the first and second
attacks match up to the (β − 1)th query (2 ≤ β ≤ n), after which the replies could
start to diverge.

The standard forking lemma applied in RM subsequently leads to the following result:
Given a successful forgery tuple (ω∗, r′∗,H∗), we can find with non-negligible probability
another successful forgery tuple (ω∗, r′∗,H∼) such that

(ρ∼1 = ρ∗1), ..., (ρ∼β−1 = ρ∗β−1), but (ρ∼β 6= ρ∗β).

We let (ω∗, r′∗,H∗) correspond to σforge(m1) ≡ (r1, s1), and (ω∗, r′∗,H∼) correspond to
σforge(m2) ≡ (r2, s2). At this stage, we highlight two important observations:

1. Adversary A is bound to query H on input m1 at some point during the first
forgery experiment. To see why, note that any successful forgery must pass the
verification test. If A never queried H on input m1, the probability of it
generating a successful forgery would be upperbounded by the probability that
H(m1) (i.e., the value that RO returns to V on query m1) satisfies the verification
condition, namely:

r1 = (gu1 × yv1 (mod p)) (mod q) = g(z1+x×r1)×(s1)−1
(mod p)) (mod q)

Since z1 could be any value in Z∗q, and since order(g) is a prime number equal to
q, the probability of such an event is on the order of 1

q−1
which is negligible in N .

2. Since the two forgery experiments have the same random tapes ω∗ and r′∗, and
since H∗ and H∼ behave the same way on the first β − 1 queries, we can be
confident that the first β queries sent to the RO in the two experiments are
identical. In particular the two βth queries are the same.

In light of the above observations, if we let β be the index of the query corresponding to
m1, we can ensure that m1 = m2 while H(m1) 6= H(m2). This will satisfy part of the
necessary conditions that we discussed earlier for C1 ∩ C2 to hold. The issue however,
is with enforcing the remaining part of the necessary conditions, namely that k1 and k2

7



2018 Bassam El Khoury Seguias c©

be appropriately linked. The reason this is difficult to enforce is because there is no
guarantee that k gets selected by A before m is queried to H. k could very well be
specified after the βth query causing the two signatures to have associated parameters
k1 and k2 without any particular binding relationship.

Due to this limitation, one cannot conclude with certainty that DSA is necessarily
secure in the RO model. However, slight variants of the DSA scheme can be shown to
be secure. We mention below two such variants due to Brickell [5] and to Pointecheval
and Vaudenay [11]:

1. The Brickell variant replaces the (mod q) operation that appears in the
calculation of r in DSA’s Σ algorithm and in the calculation of w in DSA’s V
algorithm by a random oracle H2. In other words, r becomes H2(gk (mod p)) and
w becomes H2((gu × yv) (mod p)). We refer the reader to [5] for a proof of its
security.

2. The Pointecheval-Vaudenay variant takes the hash of m and r combined
instead of that of m alone (i.e., H(m, r) instead of H(m)). This construct seems to
be the most natural, especially in light of the previous discussion about the
difficulty of building a security proof for DSA. One can only wonder why the NSA
did not adopt this formulation as part of its original scheme. We refer the reader
to [11] for a proof of its security.

Aside from these variants, Fersch et al. [8] devised a security proof for the unmodified
version of DSA by introducing an extra modeling constraint. This constraint, also
known as the bijective random oracle, applies to the conversion function:

f : N −→ Z∗q

e −→ e (mod p) (mod q)

The conversion function is none else than the one that DSA’s signature algorithm Σ
uses to calculate r with group element gk as input. The constraint that Fersch et al.
impose consists of representing f as a composition of three functions ψ ◦ Π ◦ φ, such
that Π is a bijection and such that both Π and Π−1 are modeled as random oracles. We
will not go over the details of their proof, but the interested reader can refer to [8].

3 The ECDSA scheme

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a variant of DSA that
uses Elliptic Curve Cryptography (ECC), a topic that we previously introduced in the
post entitled Elliptic Curve Groups. For a given public key length, ECC bestows on
ECDSA a significant security advantage over its DSA counterpart. This advantage is a
consequence of the observation that the security of cryptographic primitives built on the
presumed hardness of the Elliptic Curve Discrete Logarithm Problem (ECDLP)
surpasses that of those built on the presumed hardness of the Discrete Logarithm
Problem (DLP) on multiplicative cyclic subgroups.

8



2018 Bassam El Khoury Seguias c©

To put this comparative advantage into perspective, we point out that the difficulty of
solving ECDLP with 160-bit long public keys is comparable to that of solving DLP on a
multiplicative cyclic subgroup with 1024-bit long public keys [3]. In this context, the
notion of difficulty refers to the expected amount of time needed to break the discrete
logarithm problem.

Being an ECC primitive, ECDSA requires signers and verifiers to agree on the
parameters of the elliptic curve to be used. For bitcoin, the curve is secp256k1 whose
defining parameters were previously introduced in the Elliptic Curve Groups post. We
relist them below for ease of reference:

• The elliptic curve group associated with secp256k1 is (E(Fp),⊕p), where

E(Fp) = {(x, y) ∈ F2
p | y2 ≡ x3 + 7 (mod p)} ∪ {O}

{ p is the prime number equal to 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1.

{ ⊕p is the operation denoting elliptic curve point addition.

{ O is the point at infinity.

• The chosen base point G of (E(Fp),⊕p), has decimal coordinates given by

xG ≡
55066263022277343669578718895168534326250603453777594175500187360389116729240

(mod p)

yG ≡
32670510020758816978083085130507043184471273380659243275938904335757337482424

(mod p)

Bitcoin’s public-key cryptography is hence conducted on the subgroup ({G},⊕p).

• Moreover, the order of G is chosen to be a prime number equal to

n =
115792089237316195423570985008687907852837564279074904382605163141518161494337

(mod p)

• It turns out that the cardinality of (E(Fp),⊕p) is equal to n which is a prime
number. As a result, it is a cyclic group and any of its elements could serve as a
generator (refer to Groups and Finite Fields for an introduction to cyclic groups).

We let Ln ≡ blog2(n) + 1c denote the security parameter associated with ECDSA. In
what follows we define this signature scheme as a set of three algorithms:

• The ECDSA key generation algorithm G. On input 1(Ln), it produces a pair
(d,H) of matching private and public keys where d is a random element in Z∗n and
H is the elliptic curve point given by d⊗p G ≡ G ⊕p ... ⊕p G (d times). The
algorithm is modeled as a PPT Turing machine.

9



2018 Bassam El Khoury Seguias c©

• The ECDSA signing algorithm Σ. Suppose a user with private and public key
pair (d,H) decides to sign a message m. Moreover, let H be an appropriate
hashing function (e.g., SHA-256), and let

t : {0, 1}∗ −→ ∪Ln
l=1 {0, 1}l

be the truncation function mapping strings of arbitrary length to strings of length
at most Ln and such that:

– It acts as the identity map if the input string is of length at most Ln

– It outputs the Ln least significant bits of its argument otherwise

Σ proceeds as follows:

1. Let z = t ◦ H(m)

2. Select a random element k ∈ Z∗n. As was the case for DSA, it is crucial for
ECDSA to select a different random k for each signature instance. A similar
proof to the DSA case demonstrates that failure to do so would jeopardize
the private key.

3. Compute the elliptic curve point

P ≡ (xp, yp) = k ⊗p G ≡ G ⊕p ... ⊕p G (k times)

4. Set r ≡ xp (mod n). If r = 0, go back to step 2 and choose another random k.

5. Compute s = k−1 × (z + (d× r)) (mod n) where k−1 is the multiplicative
inverse of k in modulo n arithmetic. Note that as shown in the post on
Groups and Finite Fields, if n were not prime this inverse could not be
guaranteed to exist for arbitrary k. If s = 0, go back to step 2 and choose
another random k.

Σ finally outputs a signature σ(m) ≡ (r, s). The algorithm is modeled as a PPT
Turing machine.

• The ECDSA verification algorithm V . Given a signature σ, a message m,
and the public key H of the presumable signer, V verifies the validity of σ(m) by
checking the following:

– If H does not satisfy the elliptic curve equation or if H = O (i.e., the identity
element of the elliptic curve group), V outputs False.

– If r or s /∈ Z∗n, V outputs False.

– Otherwise:

{ Compute u = [t ◦ H(m)]× s−1 (mod n) and v = r × s−1 (mod n) where
s−1 is the multiplicative inverse of s in modulo n arithmetic.

{ Compute W ≡ (xw, yw) = (u ⊗p G) ⊕p (v ⊗p H)

{ If r = xw (mod n) then V outputs True. Otherwise, it outputs False.

V is a deterministic algorithm as opposed to probabilistic.

10



2018 Bassam El Khoury Seguias c©

Correctness of ECDSA The ECDSA scheme satisifies the correctness property. In
other words, any signature generated by Σ will cause the verification algorithm to
output True. To prove it, we follow a similar logic to the one used to prove DSA’s
correctness. More specifically, let σ(m) ≡ (r, s) be a signature on message m and note
that:

s = k−1 × (z + (d× r)) (mod n) ⇒

k × s = (z + (d× r)) (mod n) ⇒

k = (z + (d× r))× s−1 (mod n)⇒

The verification algorithm V will then compute

W = (u ⊗p G) ⊕p (v ⊗p H)⇒

W = (u ⊗p G) ⊕p [(d× v (mod n)) ⊗p G]⇒

W = {[(t ◦ H(m))× s−1 (mod n)]⊗p G} ⊕p {(d× r × s−1 (mod n)) ⊗p G} ⇒

W = [(z + (d× r))× s−1 (mod n)] ⊗p G = k ⊗p G = P

The previous equality allows us to conclude that:

r ≡ xp (mod n) = xw (mod n),

hence validating σ(m) and establishing ECDSA’s correctness.

11



2018 Bassam El Khoury Seguias c©

Illustrative implementation in python. In what follows, we show how the ECDSA
signature scheme could be implemented in python. Note that it is always recommended
to rely on existing and well-tested implementations. The one below is for educational
purposes and we built it from scratch with the sole intention of illustrating the process.

ECDSA relies on elliptic curve point addition and scalar multiplication. We include
below five python methods, the first three of which feed into mul scalar that perfoms
elliptic-curve point multiplication. The last method verifies whether a point belongs to
a pre-specified elliptic curve or not. The first two methods were sourced from [7].

1. extended euclidean algorithm(a, b): it takes two integers a and b and returns
a three-tuple consisting of gcd(a, b) and the bézout coefficients x and y that
satisfy ax+ by = gcd(a, b) (refer to Groups and Finite Fields):

2. inverse of(n,p): it computes the inverse of n mod p by relying on the
extended euclidean algorithm method (refer to Groups and Finite Fields):

3. add points(A, B, p, p1, p2): it adds two points p1 and p2 on the short
Weierstrass form elliptic curve whose equation is

E : y2 ≡ x3 + Ax+B (mod p)

12



2018 Bassam El Khoury Seguias c©

4. mul scalar(A, B, p, p1, m): it multiplies a scalar m by a point p1 on the short
Weierstrass form elliptic curve whose equation is

E : y2 = x3 + Ax+B (mod p)

It implementats the double-and-add algorithm previously introduced in the
Elliptic Curve Groups post and it relies on the add points method

5. is on ec(A, B, p, p1): it checks if a given point p1 belongs to the elliptic curve
group associated with the elliptic curve equation E : y2 = x3 + Ax+B (mod p)

We also saw that bitcoin’s ECDSA uses the secp256k1 elliptic curve. The following
python variables specify the parameters of this curve:

13



2018 Bassam El Khoury Seguias c©

• p dec denotes the decimal value of the order of the underlying finite field.

• G dec corresponds to the decimal coordinates modulo p dec of the base point G.

• n dec is the decimal value of the order of {G}, the subgroup generated by G.

• A dec and B dec are the decimal values modulo p dec of the parameters A and
B appearing in the short-Weierestrass form representation of the elliptic curve:

E : y2 = x3 + Ax+B (mod p)

For secp256k1, A dec = 0 and B dec = 7

The ECDSA algorithm requires us to specify an appropriate hashing function. In the
case of bitcoin, we use SHA256. In addition, the Σ algorithm makes use of a truncated
version of the hash of the message. These two operations are implemented as follows:

• The method truncate(num, L n) outputs the integer representation of the Ln
least significant bits of the argument num.

• The method message Hash(m) takes a string m, computes its SHA256, and
outputs the corresponding integer digest.

Finally, we implement the three algorithms of the ECDSA scheme:

• ecdsa Key Generate() generates a private-public key pair (d,H) :

14



2018 Bassam El Khoury Seguias c©

• ecdsa Sign(d,m) takes private key d, message m and returns signature (r, s) :

• ecdsa Verify(r,s,H,m) checks validity of (r, s) on message m and publick key H:

15



2018 Bassam El Khoury Seguias c©

We run an instance of the above algorithms as follows:

ECDSA encoding In bitcoin, an ECDSA signature (r, s) is not encoded as a simple
concatenation of r and s. Instead, it follows the Distinguished Encoding Rules or
DER for short. Those rules are formalized in the Abstract Syntax Notation One
standard (ASN.1 for short) commonly used to encode arbitrary data objects into a
structured binary file [14]. They allow for data compatibility between systems that may
use different representations. However, the merit of using it in bitcoin remains unclear.

When (r, s) is encoded in DER format, we obtain a sequential structure of the form:

[A] − [B] − [C] − [D] − [E] − [F ] − [G] − [H] − [I] − [J ]

16



2018 Bassam El Khoury Seguias c©

where:

• A ≡ {hex representation of the byte-length of the signature}: This encapsulates
the length of the full encoding to follow. A is allocated 1 byte.

• B ≡{ASN.1 tag identifier for data of type ”SEQUENCE”}: This indicates that
the data to follow is a constructed sequence. In ASN.1, the corresponding
hexadecimal value is always 0x30. B is allocated 1 byte.

• C ≡{hex representation of the byte-length of the (r, s) component}: This
encapsulates the length of the (r, s) component, inclusive of relevant ASN.1 tag
identifiers as described hereafter. C is allocated 1 byte.

• D ≡{ASN.1 tag identifier for data of type ”INTEGER”}: This indicates that the
data to follow is an integer. In ASN.1, the corresponding hexadecimal value is
always 0x02. D is allocated 1 byte.

• E ≡{hex representation of the byte-length of the r component}: This encapsulates
the length of the r component. E is allocated 1 byte.

• F ≡{big-endian format hex representation of the r value}: This is the actual value
of r represented in hexadecimal.

• G ≡{ASN.1 tag identifier for data of type ”INTEGER”}: This indicates that the
data to follow is an integer. In ASN.1, the corresponding hexadecimal value is
always 0x02. G is allocated 1 byte.

• H ≡{hex representation of the byte-length of the s component}: This encapsulates
the length of the s component. E is allocated 1 byte.

• I ≡{big-endian format hex representation of the s value}: This is the actual value
of s represented in hexadecimal.

• J ≡{Sighash byte}: A one-byte specifier that we will describe when we discuss
bitcoin transactions in another post.

Note that the above structure allows us to automatically deduce that:

{ A = C+ 0x03. The 0x03 corresponds to the 3 bytes allocated to B, C and J.

{ C = E +H+ 0x04. The 0x04 corresponds to the total bytes allocated to D,E,G
and H.

{ Theoretically, E and H can take on any value between 1 and 33 (decimal) or
equivalently 0x01 and 0x21 (hexadecimal). However, the most probable values are
32 and 33. To understand why, we first note that r and s are at most 256-bit long
values by definition of bitcoin’s ECDSA. However:

– bitcoin’s implementation requires that the most significant bit in the binary
representation of r and s be equal to 0. As a result, if either r or s have a bit
length that is a multiple of 8 i.e., of the form 8k for k = 1, ..., 32, then a most
significant 0 byte is added. In this case, the size of r or s becomes equal to
(k + 1) bytes instead of k bytes.

17



2018 Bassam El Khoury Seguias c©

– The probability that either r or s be 33-byte long corresponds to the
probability that either r or s be 256-bit long originally (i.e., k = 8 in the
notation above). That means that we are interested in the probability of the
most significant bit of a 256-bit long sequence be equal to 1. This evaluates
to 1

2
since bits are chosen at random.

– The probability that either r or s be 32-byte long is equal to 255
512

since it
corresponds to the sum of:

∗ The probability that the decimal value of the most significant byte of a
256-bit (i.e., 8 byte) long sequence be greater than or equal to 1 but less
than 128. This occurs with probability 127

256
.

∗ The probability that the most significant byte of a 256-bit (i.e., 8 byte)
long sequence be equal to 0 and the first bit of the second most
significant byte be equal to 1. This occurs with probability 1

512
.

– So the probability that either r or s be 32 or 33 bytes long is equal to
1
2

+ 255
512

= 511
512
. There remains a probability of 1

512
for the length to be less

than 32-byte long. One can calculate the probability of occurence of any of
these lengths by following a similar logic to the one just outlined above.

To see an example of how this encoding is conducted in practice, consider an (r, s)
signature given by its decimal representation:

rdec =
61650733893590164207477587688588415609194348185876455223473721547793911129291

sdec =
34204417344248643370177991773635004864182284445248039044681418183938145138707

This translates to a big-endian hexadecimal representation given by:

rhex =
0x884d142d86652a3f47ba4746ec719bbfbd040a570b1deccbb6498c75c4ae24cb

shex =
0x4b9f039ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e3813

• Since rhex is 32-byte long with a most significant bit of 1, the bitcoin protocol
mandates the addition of an extra 0 most significant byte. As such, we get:

E ≡ 0x21 (i.e., 33 in decimal)

F ≡ 0x00884d142d86652a3f47ba4746ec719bbfbd040a570b1deccbb6498c75c4ae24cb

• On the other hand, shex is 32-byte long with a most significant bit of 0. We get:

H ≡ 0x20 (i.e., 32 in decimal)

18



2018 Bassam El Khoury Seguias c©

I ≡ 0x4b9f039ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e3813

• We also have D = G ≡ 0x02 since they specify an integer value.

• The above allows us to compute C = E +H+ 0x04 ≡ 0x45.

• Assume that J = 0x01, i.e. the sighash byte is set to 1 (we will introduce sighash
when we discuss bitcoin transactions in another post).

• By definition, B ≡ 0x30.

• Finally, we calculate A = C+ 0x03 ≡ 0x48.

As a result, the DER-encoding of (r, s) becomes:

483045022100884d142d86652a3f47ba4746ec719bbfbd040a570b1deccbb6498c75c4ae
24cb02204b9f039ff08df09cbe9f6addac960298cad530a863ea8f53982c09db8f6e381301

Security of ECDSA: The importance of the randomness of the parameter k.
A necessary condition for the ECDSA scheme to be secure is for the parameter k to be
used once per each signature instance. The same logic applied earlier to DSA
demonstrates that if this were not the case, one could easily retrieve the private key d of
the signer. DSA’s derivation can be replicated by replacing x with d and q with n.

An example that underscores the importance of k is the hacking incident that affected
Sony in December 2010. At the time, a group known as ”fail0verflow” successfully
retrieved the ECDSA private key that signed software for PlayStation3. The reason the
hackers were able to do so was because Sony misimplemented ECDSA’s Σ algorithm by
forcing a static k instead of choosing a random one for every signature.

Security of ECDSA: A note on existential unforgeability. There are no known
proof of ECDSA’s security in the RO model. This may be surprising, given ECDSA’s
usage in bitcoin. Here too, similarly to DSA, the belief that a security proof may be
difficult to construct rests on our inability to date to successfully leverage the reduction
model.

One can use the same reasoning outlined earlier for DSA to argue why a security proof
for ECDSA based on the reduction model may be difficult to devise. The
aforementioned logic can be applied in exactly the same way, save for a few nuances
surrounding condition C1 that we describe next. One way of solving for an ECDSA
private key is by constructing two distinct signatures σ(m1) ≡ (r1, s1) and
σ(m2) ≡ (r2, s2) that lead to a linear equation in the unknown d. Conditions C’1 and
C2 below are jointly sufficient for this to be possible:

C’1) (u1 ⊗p G) ⊕p (v1 ⊗p H) = (u2 ⊗p G) ⊕p (v2 ⊗p H)

C2) v1 6= v2

Writing H = d⊗p G, condition C’1 becomes:

19



2018 Bassam El Khoury Seguias c©

(u1 + dv1)⊗p G = (u2 + dv2)⊗p G.

Invoking C2 along with the fact that order(G) = n, we can compute:

d = (u1 − u2)× (v2 − v1)−1 (mod n).

In what follows, we derive necessary conditions for C’1 and C2 to hold. Since both
signatures are assumed to be valid, the verification equations guarantee that:

Abscissa[(ui ⊗p G) ⊕p (vi ⊗p H)] (mod n) ≡ xwi
(mod n)

=

ri ≡ Abscissa(ki ⊗p G) (mod n) , for i = 1, 2

As a result:

C’1 ⇒ (r1 = r2) ⇐⇒ (Abscissa(k1 ⊗p G) (mod n) = Abscissa(k2 ⊗p G) (mod n))

Consequently, k1 and k2 must exhibit a certain relationship for the first condition to
hold. With overwhelming probabilty, two randomly chosen parameters k1 and k2 will
not satisfy this equality.

Since C’1 ⇒ (r1 = r2) and since vi = ri × s−1
i (mod n), for i = 1, 2, we can write:

C’1 ∩ C2 ⇒ (r1 = r2) ∩ (s1 6= s2)

Recalling that si = k−1× (t ◦H(mi) + (d× ri)) (mod n), for i = 1, 2, we conclude that:

(r1 = r2) ∩ (s1 6= s2) ⇒ (k1 6= k2) ∪ (H(m1) 6= H(m2))

Similarly to DSA, the takeaway is that to be able to effectively use the reduction
technique to solve for d in the case of ECDSA, one will possibly need to ensure that
valid signatures σ(m1) and σ(m2) satisfy the following at a minimum:

1. Abscissa(k1 ⊗p G) (mod n) = Abscissa(k2 ⊗p G) (mod n), and

2. H(m1) 6= H(m2) or k1 6= k2 .

Here too, we purposely used the term ”possibly”. The remaining part of the
argumentation is exactly the same as the one we previously outlined for DSA. We
highlight again that out objective was not to argue that a security proof for ECDSA is
not possible, but rather that such a proof may be difficult to achieve using the
reduction technique.

Despite the absence to date of a security proof for ECDSA in the RO model, slight
variants were shown to be secure:

1. The Brickell variant consists of replacing the function (x, y) −→ x (mod n) that
appears in ECDSA’s Σ and V algorithms by a random oracle H2. In other words,

20



2018 Bassam El Khoury Seguias c©

r becomes H2(k ⊗p G) and the verification algorithm checks if r = H2(W ). A
proof of its security could be constructed in a similar way to the one provided for
DSA in [5].

2. The Pointecheval-Vaudenay-Lee-Smart variant also known as ECDSA - II
takes the hash of m and r combined instead of that of m alone (i.e., H(m, r)
instead of H(m)). This construct is similar to the DSA variant introduced earlier
and we refer the reader to [10] for a proof of its security.

Aside from these variants, Brown [6] and Fersch et al. [8] devised two different security
proofs for the unmodified version of ECDSA by introducing extra modeling constraints.

3. In the case of Brown, H is not assumed to behave as a random oracle. However,
the underlying group is modeled as a generic group. The generic group assumption
is a strong one since it was shown in [13] that it implies that ECDSA would be
strongly unforgeable (and hence non-malleable), a conclusion that is known not to
be valid for ECDSA as we discuss in a subsequent section. We will not go over the
details of generic groups or Brown’s model, but refer the interested reader to [6].

4. In the case of Fersch et al., H is assumed to be a random oracle. In addition, the
authors impose a constraint (similar to the one imposed in their proof for the
DSA case), known as the bijective random oracle. This constraint is applied to
the conversion function which in the case of ECDSA is defined as:

f : (Fp × Fp) −→ Z∗n

e −→ Abscissa(e) (mod n)

The conversion function is none else than the one that ECDSA’s Σ algorithm uses
to calculate r with elliptic curve point P as input. The constraint that Fersch et
al. impose consists of representing f as a composition of three functions ψ ◦Π ◦ φ,
such that Π is a bijection and such that both Π and Π−1 are modeled as random
oracles. We will not go over the details of their proof, but the interested reader
can refer to [8].

Security of ECDSA: Signature’s malleability. Once a signature σ(m) has been
issued on a given message m, it is reasonable to require that no adversary be able to
devise another valid signature σ′(m) 6= σ(m) on the same message. A signature is said
to be malleable if it is not subjected to the aforementioned requirement. As a result,
signature malleability could potentially lead to an instance of forgery, albeit in a
restrictive sense since the message is taken to be the same. On the other hand,
signatures that are simulteneously not malleable and existentially unforgeable (i.e.,
resilient against EFACM) are referred to as strongly unforgeable [4].

Signature malleability leads to transaction malleability, a notion that we will
discuss in a separate post dedicated to bitcoin transactions. For the purpose of our
current discussion, it suffices to highlight that a bitcoin transaction is a data structure
that encompasses four main categories of information:

21



2018 Bassam El Khoury Seguias c©

1. Source(s) of funds to be transfered, also known as unspent transaction output(s)
or UTXO(s).

2. Destination(s) of the funds (i.e., the intended recipient(s) addresse(s)).

3. Exact amount to be sent to each destination address.

4. Information containing the DER-encoded ECDSA signature(s) on the relevant
UTXO(s).

Transactions are represented in a serialized byte format that we discuss in more detail
in the bitcoin transactions post. The raw serialization is subjected to a double SHA-256
operation that outputs a hexadecimal digest known as the transaction id or txid for
short. Any alteration to the body of the transaction, no matter how small, results in a
different txid. This is a direct consequence of the expected behavior of a hashing
function.

The critical observation is that although a signature is part of the body of the
transaction, it is logically infeasible to sign a data structure inclusive of the resulting
signature itself. Instead, the signing process is applied to the content of the transaction
exclusive of the signature. More specifically, the message that gets signed includes
information about the funding UTXOs, the destination addresses and their respective
intented amounts.

By definition, a malleable signature scheme could lead to the creation of two valid
but different signatures applied to the same transaction. Such an event would cause the
bitcoin network to end up with at least two different txids referencing the same content.
Such a situation could motivate a specific type of attack known as a malleability
attack. The gist of it is as follows:

1. Suppose Alice issues a BTC payment to Bob. Let txid1 be its transaction id.

2. Suppose that Bob alters the signature of Alice’s transaction (assuming it is a
malleable scheme) right before txid1 gets any confirmation on the blockchain.
This alteration results in a new transaction id, namely txid2, on the same content
(i.e., the intended recipient is still Bob, the funding UTXOs are still the same, and
the amount remains as is).

3. If txid2 gets confirmed on the blockchain before txid1, the latter will become
orphaned. If Alice does not have the required level of sophistication to track
UTXOs on the blockchain in order to verify that her original UTXOs have been
spent, it will rely instead on the confirmation status of txid1. Given that it was
orphaned, it will conclude that the funds never reached Bob’s address.

4. Bob could then defraud her by asking her to issue a new payment knowing that he
would have already received the intended funds by virtue of txid2 being
confirmed. He would then receive twice the intended amount.

The above malleability attack can be interpreted as an instance of double-spending,
although the malicious party in this case is the receiver and not the sender.

22



2018 Bassam El Khoury Seguias c©

It turns out that ECDSA is malleable. In what follows, we describe three possible
avenues to change it without modifying relevant content in the transaction. We
highlight that the first two avenues could be exploited by any party including e.g., the
recipient of a given transaction. As a result, they are conducive to malleability attacks.
On the other hand, the third avenue is specific to the holder of the private key. If the
sender is the only holder of the key, one can reasonably assume that no malleability
attacks would ensue. We point out that bitcoin has already implemented measures to
prevent the first two avenues from being nefariously exploited:

1. Malleability caused by Non-DER encoded ECDSA signatures: We described
earlier how to encode an ECDSA signature into DER format. Given an (r, s) pair,
one can see that by diligently applying the DER encoding procedure, the resulting
output will be unique. In particular, a strict implementation of DER would not
allow prepending any number of 0 bytes to the octet representation of integers.
The only exception occurs if the most significant bit of this octet representation is
equal to 1, in which case we prepend a single 0 byte. For example:

• An r value of 0x4b9 cannot be encoded as e.g., 0x004b9.

• An s value of 0x884d must be encoded as 0x00884d (since the most
significant bit is equal to 1), but cannot be encoded as e.g., 0x0000884d.

However, bitcoin’s original implementation did not strictly enforce this rule. As a
result, one could derive an infinite number of encodings for a given (r, s) pair.

23



2018 Bassam El Khoury Seguias c©

This source of signature malleability has been addressed in Bitcoin Improvement
Protocol 66 (BIP 66) [15].

2. Malleability caused by ECDSA’s inherent signature construct: Given an
ECDSA signature σ(m) ≡ (r, s), one can automatically devise another valid
signature on m by replacing s with (n− s), where n is the order of G. In other
terms, σ′(m) ≡ (r, n− s) is a valid signature on m. To see why, recall that σ(m)
satisfies the verification algorithm V which consists of the following steps:

• Compute u = [t ◦ H(m)]× s−1 (mod n)

• Compute v = r × s−1 (mod n)

• Compute W ≡ (xw, yw) = (u ⊗p G) ⊕p (v ⊗p H)

• Validate that r = xw (mod n)

On the other hand, running the verification algorithm V on σ′(m) will:

• Compute u′ = [t ◦ H(m)]× (n− s)−1 (mod n)

• Compute v′ = r × (n− s)−1 (mod n)

• Compute W ′ ≡ (xw′ , yw′) = (u′ ⊗p G) ⊕p (v′ ⊗p H)

• Check if r = xw′ (mod n)

Let a ≡ (n− s)−1 (mod n) We get the following implications:

a ≡ (n− s)−1 (mod n) ⇐⇒ a× (n− s) = 1 (mod n)

⇐⇒ a× n− a× s = 1 (mod n) ⇐⇒ −a× s = 1 (mod n)

⇐⇒ −(s)−1 = (n− s)−1 (mod n)

As a result, we rewrite σ′(m)’s verification steps as follows:

• Compute u′ = [t ◦ H(m)]× (−s−1) (mod n) = −u (mod n)

• Computing v′ = r× (n− s)−1 (mod n) = r× (−s−1) (mod n) = −v (mod n)

• Computing W ′ ≡ (xw′ , yw′) = (u′ ⊗p G) ⊕p (v′ ⊗p H) = −W. Recall that
as was introduced in the Elliptic Curve Group post, the inverse of the elliptic
curve point W ≡ (xw, yw) is −W ≡ (xw,−yw (mod n)). And so xw = xw′ .

• Since σ(m) is a valid signature, we have r = xw (mod n). In light of the
previous equality, we deduce that r = xw′ (mod n) and as a result, that
σ′(m) is also a valid signature on m.

This type of signature malleability was supposed to be addressed in BIP62, but
had to wait until Pull Request #6769 [1] to be resolved. The mitigation
mechanism consisted of requiring that only the signature with the lowest s value
be valid.

3. Malleability caused by ECDSA’s reliance on the random parameter k: The
third source of signature malleability is a direct result of the presence of the

24



2018 Bassam El Khoury Seguias c©

parameter k in the signing algorithm Σ. A signer could decide to sign the message
as many times as she likes, and the randomly generated parameter k will ensure
that these signatures are different. However, as mentioned earlier, this source of
malleability does not lend itself to attacks of the type previously described.

ECDSA multisignatures. So far, our discussion of ECDSA signatures was limited
to single signers. It turns out that more elaborate signatures could be constructed. In
particular, we could have n > 1 private keys jointltly sign a transaction in what is
commonly known as a multisignature. An important observation is that the
implementation of multisignatures in bitcoin consists of creating a separate signature
for each private key and then grouping these signatures together. This construct results
in at least three disadvantages:

1. Size inefficiency: The multisignatures size grows linearly with the number of
signers. A direct impact is that multisignatures will occupy a bigger portion of a
block on the blockchain. And since block issuance is kept constant at ∼1 block per
10 minutes, this results in a lower transaction throughput and slower processing.

2. Higher cost: Transaction fees in bitcoin are calculated on a kilobyte basis. This
implies that larger transaction sizes will cost more. As a result, multisignatures
are more costly than monosignatures.

3. Less privacy: In order to verify the validity of an ECDSA multisignature, the
network must have access to the set of the public keys of the signers. Making the
public key set known will signal that the transaction is of a multisignature type
and could draw unecessary attention from potential attackers. Ideally, one would
want to keep private the multisignature nature of a given transaction.

In conclusion, we note that despite the ECC-inherited security features of ECDSA,
the signature scheme is not fully immune to drawbacks including:

1. An absence to-date of a proof of ECDSA’s security in the RO model. For some,
this may be a non-issue, but others would prefer to use a scheme that is at least
provably secure in this idealized setting.

2. An inherent malleability buit in ECDSA signatures.

3. A size-inefficient, more costly and less private implementation of multisignatures.

In light of these shortcomings, a new BIP advocating the adoption of a different
signature scheme has been put forth. It turns out that similar to the Schnorr scheme, a
variant of it known as Elliptic Curve Schnorr [16] is provably secure and non-malleable
in the RO model. Moreover, this variant benefits from the linearity property that allows
multiple private key holders to jointly sign a transaction such that the resulting
signature is not a naive concatenation of individual signatures, but rather a non-trivial
aggregation that reduces to a monosignature. We will discuss multisignatures and
explain the advantages of the Elliptic Curve Schnorr variant in a separate post.

25



2018 Bassam El Khoury Seguias c©

References

[1] Pull request 6769 - script verify low s.
https://github.com/bitcoin/bitcoin/pull/6769, 2015.

[2] Anonymous. Rebutal to schnorr’s patent claims re dsa. https://bit.ly/2SrEAeW,
August 1998.

[3] Elaine Barker. Recommendation for key management part 1. NIST Special
Publication 800-57 Part 1 Revision 4, January 2016.

[4] D. Boneh, E. Shen, and B. Waters. Strongly unforgeable signatures based on
computational diffie-hellman. PKC LNCS, 3958:229–240, 2006.

[5] Ernest Brickell, David Pointcheval, Serge Vaudenay, and Moti Yung. Design
validations for discrete logarithm based signature schemes. Public Key
Cryptography. PKC 2000. Lecature Notes in Computer Science, 1751, 2000.

[6] Daniel R.L. Brown. The exact security of ecdsa. Technical Report CORR 2000-34
Certicom Research, 2000.

[7] Andrea Corbellini. Elliptic curve cryptography, a gentle introduction.
http://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-
introduction/.

[8] Manuel Fersch, Eike Kiltz, and Bertram Poettering. On the provable security of
(ec)dsa signatures. Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1651–1662, October 2016.

[9] David W. Kravitz. Digital signature algorithm patent.
https://patents.google.com/patent/US5231668, 1991.

[10] John Malone-Lee and Nigel P. Smart. Modifications of ecdsa. Selected Areas in
Cryptography—SAC, 2595:1–12, 2003.

[11] David Pointcheval and Serge Vaudenay. On provable security for digital signature
algorithms. 11 1996.

[12] Claus P. Schnorr. Method for identifying subscribers and for generating and
verifying electronic signatures in a data exchange system.
https://patents.google.com/patent/US4995082, 1989.

[13] J. Stern, D. Pointcheval, J. Malone-Lee, and N.P. Smart. Flaws in applying proof
methodologies to signature schemes. CRYPTO, pages 93–110, 2002.

[14] International Telecommunication Union. Itu-t x.690.
https://www.itu.int/rec/T-REC-X.690/, July 2002.

[15] Pieter Wuille. Bip66 - strict der signatures.
https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki, 2015.

[16] Pieter Wuille. proposed bip for 64-byte elliptic curve schnorr signatures.
https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki, July 2018.

26


