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1 Introduction and motivation

The sempiternel question of how to gain and maintain power has haunted the minds
of humanity’s brightest and darkest since the dawn of civilization. Be it physical (e.g.,
military) or economical (e.g., wealth), power’s very existence relied in part on access to
information. Asymmetric information that is. Numerous are history’s examples that
demonstrate how entities that knew what others didn’t and that were able to act on
it, benefited from an unfair advantage. The quest for sustainable power motivates the
protection of one’s proprietary information and the attempt at breaching that of the
others.

Although significant in its own right, the pursuit of power is not the only motivator
to conceal information. Privacy, in so far as the individual’s well-being is concerned, is
another. In that respect, two areas stand out. The first is concerned with the unique
nature of a human persona. As a matter of observation, and at the risk of irritating
adherents of monism, the attributes of a human personality are so varied. Each attribute
exists on a wide spectrum, making it unlikely that any two individuals have the same
profile so to speak. The privacy spectrum is no exception, and while some live their lives
as an open book, others might not even be comfortable sharing their half title page. The
second area is concerned with the safety of a certain subset of individuals, e.g., whistle-
blowers. They may hold sensitive information destined to be shared with a specific party.
Should this information fall in the wrong hands, it could jeopardize the safety of the
source.

It is therefore reasonable to assume that not every piece of information is meant to
be common knowledge. One could certainly debate the merits of such a claim and in
the process, revisit the very foundation of power, privacy and safety. The fact remains
however, that information can be a source of influence, discomfort, and danger. One way
of protecting specific content and limiting its access to intended parties only, is through
the use of encryption and decryption algorithms.
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Symmetric-key vs. public key cryptography Encryption can be thought of as
a map that takes a relevant piece of data known as a message, and outputs an altered
version of it. The map can be either one of two types: 1) PT-invertible, or 2) One-way.

1. We say that a function is PT-invertible if one can find a polynomial-time algorithm
to compute its inverse. In order for a sender to encrypt a message, he must be
able to compute the map. On the other end, in order for a recipient to decrypt the
message, she must be able to compute the inverse map. If a map is PT- invertible,
information used to build it is sufficient to build its inverse. As a result, senders and
recipients alike can use the same information to encrypt and to decrypt messages in
a process known as symmetric-key cryptography. The symmetric information
shared between the sender and the recipient is known as the secret key.

As an example, consider a message space consisting of the case-agnostic latin
alphabet of 26 letters. We represent each letter by its numerical equivalent (e.g.,
letter ”a” or ”A” represented by 1), and apply the following affine map:

f : {1, ..., 26}∗ → {1, ..., 26}∗

(n1, n2, ...)→ f(n1, n2, ...) ≡ (αn1 + β (mod 26), αn2 + β (mod 26), ...)

where the ∗ superscript denotes a string of arbitrary length, and α, β are
pre-defined elements in {1, ..., 26} such that α is relatively prime to 26.

For instance, let α = 3 and β = 5. The word ”chaos” has a representation given
by (3, 8, 1, 15, 19). When fed to the map, one obtains an output given by
f(3, 8, 1, 15, 19) = (14, 3, 8, 24, 10). This corresponds to ”nchxj”.

The inverse map can be written as follows:

f−1 : {1, ..., 26}∗ → {1, ..., 26}∗

(y1, y2, ...)→ f−1(y1, y2, ...) = (α−1(y1 − β) (mod 26), α−1(y2 − β) (mod 26), ...)

where α−1 is the inverse of α in modulo 26 arithmetic (i.e., α× α−1 ≡ 1
(mod 26)). Since, α and 26 are relatively prime, one can use the extended
euclidean algorithm outlined in the Groups and Finite Fields post to calculate
α−1 in polynomial time. Consequently, f is a PT-invertible map. All that is
required to build it and its inverse is the pair (α, β). This pair constitutes the
symmetric key shared between the sender and the recipient.

Symmetric-key cryptography is known to be efficient, with the possibility of
encrypting and decrypting large amounts of data relatively fast. Its weakness
however, lies in the fact that the secret key must be shared between two (or more)
parties over a secure channel. Enforcing perfect security and eliminating the
risk of leakage over a digital communication channel is a challenging endeavour.
Moreover, if such a secure medium of communication could be constructed, it
would be legitimate to question the usefulness of sharing a secret key in the first

2



2018 Bassam El Khoury Seguias c©

place as opposed to using the secure channel to directly send and receive the
actual messages.

2. One-way or trapdoor functions have no known polynomial-time algorithm to
compute their inverses in the absence of a specific piece of information referred to
as the trapdoor. In other words, knowledge of the building blocks of a map is
not sufficient to compute its inverse. In order to do so (and as a result decrypt a
message), a recipient must have access to the trapdoor.

Algorithms where the information needed to encrypt is different than that
needed to decrypt, form the basis of asymmetric cryptography. The
nomenclature is a reflection of the informational asymmetry between encryption
and decryption. More specifically, each recipient is associated with a key pair
consisting of a unique private key only known to her, and a related public key
that can be shared with anyone. Anyone can use the public key of a recipient to
encrypt a message. Decryption however, requires knowledge of the private key
which is only known to the recipient. In light of the above, a crucial criterion in
the design of key pairs is that no entity should be able to derive the private key
from the public one. The dual-key architecture is the reason why asymmetric
cryptography is also known as public-key cryptography.

As an example we consider the RSA encrytion scheme. RSA generates the
public and private keys of a user as follows:

• Select two very large primes p and q such that p 6= q.

• Let n ≡ p× q. One can observe that given p and q, it is easy to compute n.
However, given n, it is extremely challenging to find p and q. This is known
as the factoring problem, thought to be intractable on the group ((R+)

∗
,×).

• Find n’s totient value φ(n). Euler’s totient function returns the number of
integers less than or equal to n that are relatively prime to n. If n is prime,
then φ(n) = n− 1. In addition, for any two coprime numbers p and q,
φ(p× q) = φ(p)× φ(q). Consequently,

φ(n) = φ(p× q) = φ(p)× φ(q) = (p− 1)× (q − 1)

• Choose e ∈ N∗ such that 1 < e < φ(n) and such that gcd(e, φ(n)) = 1. We let
(n, e) be the public key of the user.

• Choose d ∈ N∗ such that d× e ≡ 1 (mod φ(n)). That means that
d× e = 1 + α× φ(n) for some integer α. We observe that even if e were
known, it is computationally hard to calculate φ(n) because this requires
computing (p− 1) and (q − 1) which in turn, requires solving the prime
factorization problem. This in turn, makes it challenging to calculate d. We
let (n, d) be the private key of the user. The previous observation shows that
it is unlikely for anyone to derive the private key (n, d) from the public key
(n, e) alone.
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To encrypt a message destined to Bob, Alice first transforms it into an integer
0 < m < n by using a common-knowledge pre-defined mapping. We require that
m and n be coprime. Subsequently, Alice computes the encrypted value v = me

(mod n), where (n, e) is Bob’s public key. In order to decrypt the message, Bob
uses his private key (n, d) to compute vd (mod n). To see why this works, note the
following equalities:

vd (mod n) = med (mod n) = m1+αφ(n) (mod n) = m× (mφ(n))α (mod n)

We can invoke Euler’s theorem that states that if m and n are relatively prime,
then mφ(n) ≡ 1 (mod n) (proof ommitted). We conclude that

vd (mod n) = m (mod n)

Note that when the public key (n, e) is known, it is straightforward to compute
v = me (mod n). However, calculating its inverse (i.e., finding the value of m
when v and (n, e) are known) is thought to be hard. On the other hand,
knowledge of the private key (n, d) allows a quick retrieval of m as we saw above.

A downside of public key cryptography is that it is not nearly as efficient as its sym-
metric counterpart, especially as the message size increases. However, symmetric-key
cryptography depends on the existence of a secure channel which is challenging to build.
The upside of asymmetric cryptography is that it bypasses the need for a secure channel
altogether. It turns out that one can leverage the advantage of each type of cryptography
to create a hybrid system that is both secure and efficient. This is accomplished through
the use of a key-exchange protocol known as a Diffie-Hellman exchange.

The idea is to simply apply public-key cryptography to communicate a shared secret,
which can then be used in a symmetric-key setting to encrypt and decrypt larger messages.
Since the secret-key is relatively small (from a data standpoint), it can be encrypted rather
efficiently using a public-key setting and then shared with a recipient on an untrusted
channel. Larger message blocks can subsequently be effectively encoded and decoded
using the secret key. More formally, an example of this setting can be described as
follows:

• Consider the multiplicative cyclic group (Z∗p ,⊗) of the finite field (Zp ,⊕,⊗) of
large prime order p (The reader can consult the Group and Finite Fields post for
more details). Let g be one of its generators.

• Alice and Bob chose their individual secret keys ska, skb from F∗p ≡ {1, ..., p− 1}

• They compute their respective public keys

pka = gska ≡ g ⊗ g ⊗ ...⊗ g (ska times)

pkb = gskb ≡ g ⊗ g ⊗ ...⊗ g (skb times)

• Bob uses Alice’s public key to compute pkskba = gska×skb . Similarly, Alice uses
Bob’s public key to compute pkskab = gskb×ska .
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• The two previously calculated values are equal and known only to Alice and Bob.
This is because its calculation requires knowledge of at least one of the two secret
keys. It can then be used as a shared secret as part of a symmetric-key algorithm.

As noted earlier, the most important design criterion is to ensure that the secret key
cannot be derived from the public key. In our setting, this means that when given g
and pk = gsk, no one should be able to calculate in polynomial time the value of sk.
This is known as the discrete logarithm (DL) problem and we will revisit it. On the
multiplicative group of a finite field of large prime order, the DL problem is thought to
be hard.

Digital signatures Encryption schemes help protect the content. However, they pro-
vide no proof that a certain sender was the actual author. This is true especially in the
context of public-key cryptography where encryption keys are made public, allowing any
party to claim that it was the actual sender. This problem can have drastic consequences
when dealing with cryptocurrencies. Indeed, a cryptocurrency transaction consists of a
message whose content allows a transfer of spending control from one owner to another.
In Bitcoin for example, all valid transactions are publicly registered on the blockchain,
and their content is purposefully not encrypted in order to enforce transparency and allow
nodes to validate or reject them. However, the message in this case must be accompanied
by a proof that the sender is actually the initiator of the transaction. Otherwise, anyone
could initate a transaction on behalf of someone else without their consent, potentially
causing financial mayhem.

The authentication process is done through the use of a mathematical construct known
as a digital signature. In the context of cryptocurrencies, we care about digital signature
and less so about encryption. The most important attribute of a digital signature is that
of unforgeability. This can be defined in a variety of ways, but for all practical matters
we mean resilience against existential forgery in the adaptive chosen-message at-
tack. More details about digital signatures and the definitions of forgery can be found in
the post entitled Digital Signature and Other Prerequisites. Generally speaking, digital
signatures use the same public-key cryptography infrastructure described earlier for en-
cryption and decryption. The sender signs with her private key in order to authenticate
the message. Anyone on the network can then verify that she was the actual sender by
running a verification algorithm that relies on the sender’s public key. Various examples
of digital signatures including Schnorr, RSA, generic Pointcheval & Stern models, as well
as a number of more elaborate ring signature schemes can be found in previous posts.

The discrete logarithm problem A necessary condition to avoid forgery is that no
one should be able to derive the private key from the public one. Here too, we realize
the cruciality of one-way constructs. An important example of such a construct is the
one associated with the DL poblem encountered earlier. The hardness of the DL problem
on some well-defined groups underlies the security of various digital signature schemes,
including those adopted in cryptocurrencies. Formally, we define the DL problem as
follows:

• Let (G,⊗) be a given group and g an element of G.
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• Given an element y ∈ {g} (i.e., the subgroup generated by g), find an integer x ∈ N
such that y = gx ≡ g ⊗ g ⊗ ...⊗ g (x times).

The smallest x that satisfies the above equation is known as the logarithm of y in
base g and we write x = logg(y).

The difficulty associated with calculating x knowing y and g depends on the underlying
group (G,⊗). On some groups, the problem is easy to solve (i.e., we know of polynomial-
time algorithms that can solve it). On others, it is harder. Moreover, there exists different
levels of difficulty, the highest being exponential (i.e., the only known algorithm(s) to
solve the problem are exponential in time). In the context of public-key cryptography,
it is always desirable to operate on groups where the hardness of the DL problem is
exponential.

An example of a group on which the DL problem is easy to solve is (Zn,⊕) (i.e., the
group of integers modulo n introduced in the Group and Finite Fields post). To see why,
first note that this group is cyclic and that the equivalence class [1] is a generator. Given
[y] ∈ Zn, the DL problem consists in finding x ∈ N such that

[y] = [1]x ≡ [1]⊕ [1]⊕ ...⊕ [1] (x times)

By the definition of ⊕, this is equivalent to finding x such that [y] = [x] i.e., y such that
y ≡ x (mod n). Consequently, one can compute x efficiently using the Euclidean
algorithm.

An example of a group on which the DL problem is believed to be hard is the
multiplicative group (Z∗p ,⊗) of the finite-field (Zp ,⊕,⊗) of large prime order p. This
group is cyclic and was introduced in the Group and Finite Fields post. The time

required by the best-known algorithm to solve DL on it is ∼ O(ec
3
√

(log p)(log log p)2) [10].
The running time is sub-exponential i.e., executes faster than an exponential algorithm
but is less efficient than a polynomial one.

Despite the hardness of DL on the multiplicative cyclic subgroup of a large finite field,
it remains more desirable to operate on groups where the DL is thought to be
exponentially hard. An example of such a group is the one associated with elliptic
curves over finite fields. The elliptic curve discrete logarithm problem (ECDLP) over
Fp is thought to be exponentially hard, with the best performing algorithm requiring
time ∼ O(

√
p) [10].

By way of comparison, ECDLP on a finite field of order ∼ 2160 has an equivalent
difficulty to a DL problem on the multiplicative cyclic subgroup of F∼21000 . One
implication is that cryptographic primitives based on ECDLP require significantly
smaller keys. This explains why the digital signature schemes used in various
cryptocurrencies (e.g., Bitcoin’s ECDSA, Monero’s MLSAG) rely on elliptic curve
groups.

With this motivation behind us, we are now in a position to introduce the concept of
an elliptic curve. Its theory is very rich and sits at the intersection of different branches
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of mathematics including analysis, geometry, and algebra. Our objective is to build a
group structure based on the geometry of elliptic curves. The new group is referred to
as an elliptic curve group and forms the public-key infrastructure of a number of
cryptocurrencies in use today. We highlight that this introduction is limited to the
minimum that we think is needed to appreciate the subject. It is by no means a
comprehensive treatise. Readers interested in a detailed treatment of elliptic curve
theory can consult e.g., [10]

In what follows, we first introduce an analytic view of elliptic curves over arbitrary
fields. We describe the general Weierstrass form and derive a more simplified version as
long as some constraints are observed. We then look at the geometry of elliptic curves
over real numbers, and build a group structure after augmenting the curve with a point
at infinity. The group’s binary operation, also referred to as point addition, is described
geometrically and analytically. Later, we introduce the elliptic curve group over finite
fields and finally, we describe the two elliptic curves used in Bitcoin and in Monero.

2 Elliptic curves: An analytic description

One way of defining an elliptic curve is as a set of points satisfying the Weierstrass
general equation and given by:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

The coefficients a1, a2, a3, a4, a6 are chosen from a field K and we say that E is defined
over K. Note that a5 is purposefully left out for reasons that we keep out of scope for
now. K could be for instance the field of real numbers R, or any finite field. Recall that
in the Groups and Finite Fields post we mentioned that any finite field is either of
prime order p or is an extension Fpm of a field of prime order p where m can be any
positive integer. We refer to p as the characteristic of the finite field Fpm and write
char(Fpm) = p. We derive below a simplified version of the Weierstrass equation
applicable only if we exclude fields of characteristics 2 and 3.

Let’s first look at the left-hand side of the equation. It is tempting to complete the
quadratic in y. We can always find λ such that

(y + λ)2 − λ2 = y2 + a1xy + a3y

We could subsequently make a change of variables by substituting y with u ≡ y + λ.
Since λ does not depend on y, we would have eliminated all terms that contain y as a
factor. The aforementioned equation in λ can equivalently be written as

2yλ = a1xy + a3y

One would then be tempted to conclude that λ = a1x+a3
2

, except that division by 2 is
not always permissible on an arbitrary field K. If char(K) = 2, then 2 ≡ 0 (mod 2) will
not admit a multiplicative inverse on K. However, division by 2 is possible on all other
fields. In what follows, we always assume that char(K) 6= 2. Consequently, we can

7



2018 Bassam El Khoury Seguias c©

compute λ and perform the change of variable. The Weierstrass equation becomes:

u2 − (a1x+a3
2

)2 = x3 + a2x
2 + a4x+ a6

⇐⇒ u2 = (a1x
2

)2 + (a3
2

)2 + (a1a3x
2

) + x3 + a2x
2 + a4x+ a6

⇐⇒ u2 = x3 + (a2 +
a21
4

)x2 + (a4 + a1a3
2

)x+ (a6 +
a23
4

)

Letting a′2 ≡ a2 +
a21
4
, a′4 ≡ a4 + a1a3

2
, and a′6 ≡ a6 +

a23
4
, the elliptic curve equation

becomes:

E : u2 = x3 + a′2x
2 + a′4x+ a′6

The next step consists in simplifying the right hand-side of this equation. It turns out
that any cubic equation can be transformed into an equivalent one with the quadratic
term eliminated. We do so by substituting variable x with a variable of the form
v = x+ ν. The value of ν is derived by first performing the substitution and then
eliminating the coefficient of the quadratic term as follows:

u2 = (v − ν)3 + a′2(v − ν)2 + a′4(v − ν) + a′6

⇐⇒ u2 = v3 − 3v2ν + 3vν2 − ν3 + a′2v
2 − 2a′2vν + a′2ν

2 + a′4v − a′4ν + a′6

⇐⇒ u2 = v3 + (a′2 − 3ν)v2 + (3ν2 − 2a′2ν + a′4)v − ν3 + a′2ν
2 − a′4ν + a′6

We require that the coefficient of v2 be equal to 0. This imposes a constraint on ν’s
value which must satisfy:

−3ν + a′2 = 0

If char(K) 6= 3, we can always find a multiplicative inverse of 3 in K and as a result,

solve for ν =
a′2
3
. The elliptic curve equation becomes:

u2 = v3 + (− (a′2)
2

3
+ a′4)v + (a′6 +

2(a′2)
3

27
− a′2a

′
4

3
)

We can relabel the (v, u) variables as (x, y), and let A = (− (a′2)
2

3
+ a′4) and

B = (a′6 +
2(a′2)

3

27
− a′2a

′
4

3
). We then obtain the simplified Weierstrass equation of an

elliptic curve over a field K such that char(K) /∈ {2, 3} :

E : f(x, y) = y2 − x3 − Ax−B = 0

In the following section we construct a group structure over elliptic curves. The tangent
to the curve at a given point will play an essential role in this construction. As a result,
elliptic curves that have singularities (i.e., points where the curve is not differentiable)
are not desired and will be excluded. Examples of singularities on a curve include cusps
and self intersections. Analytically, a necessary and sufficient condition for a point
P ≡ (xp, yp) on a curve f(x, y) = 0 to be singular is for the partial derivatives at (xp, yp)
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to be equal to 0. For the elliptic curve equation we get:

{ f(xp, yp) = 0 ⇐⇒ y2p − x3p − Axp −B = 0

{ fx(xp, yp) = 0 ⇐⇒ −3x2p − A = 0

{ fy(xp, yp) = 0 ⇐⇒ 2yp = 0

The last equation implies that yp = 0. If we substitute yp = 0 in the first and second
equations, we conclude that

P ≡ (xp, yp) is singular ⇒ x3p + Axp +B = 0 and 3x2p + A = 0

Consequently, xp must be a cubic root of x3 + Ax+B as well as of its derivative
3x2 + A. This means that xp is a double root of x3 + Ax+B. If we let β denote the
third root, we get the following factorization:

(x3 + Ax+B) = (x− xp)2(x− β)

= (x2 + x2p − 2xpx)(x− β) = x3 − (2xp + β)x2 + (x2p + 2xpβ)x− x2pβ

By comparing coefficients, we find that β = −2xp, A = −3x2p and B = 2x3p. This in turn
implies that the discriminant ∆ ≡ 4A3 + 27B2 = 0. To summarize, we showed that
given an elliptic curve E : f(x, y) = y2 − x3 − Ax−B = 0 over a field K such that
char(K) /∈ {2, 3}, we have:

P ≡ (xp, yp) ∈ E is singular ⇒ ∆ ≡ 4A3 + 27B2 = 0

The contrapositive statement allows us to derive a sufficient condition for E to be
non-singular. Specifically, if ∆ 6= 0 for all (x, y) ∈ E, then E is non-singular. Going
forward, we only consider non-singular elliptic curves defined over fields of characteristic
other than 2 or 3:

E = {(x, y) ∈ K | (y2 = x3 + Ax+B) ∩ (char(K) /∈ {2, 3}) ∩ (4A3 + 27B2 6= 0)}

3 Elliptic curve groups: A geometric approach

In what follows, we endeavour to build the elliptic curve group over finite fields. To
do so, we first consider elliptic curves over R and study their geometry in order to devise
a natural abelian group structure. Technically, the construction is performed in the
projective plane as opposed to the euclidean plane. However, we attempt to motivate
and justify the build-up without delving into the technicalities of projective geometry.
Finally, we adapt the binary operation of the group to the case of a finite field.

Elliptic curves over R can be easily drawn on the euclidean plane. We include below
the graphs of five different elliptic curves, two of which are singular and three regular.
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Elliptic curves exhibit x-axis symmetry. To see why, note that ∀P ≡ (xp, yp) on the
curve, it must hold that P ≡ (xp,−yp) is also on the curve. Indeed,

y2p − x3p − Axp −B = (−yp)2 − x3p − Axp −B

Moreover, y2p − x3p − Axp −B = 0 by virtue of P being a point on the curve. Therefore,

(−yp)2 − x3p − Axp −B = 0, demonstrating that P is also a point on the curve.

In order to define any group, one needs to have an underlying set of elements as well
as a binary operation on it that ensures that the group axioms are observed. In our
case, the underlying set contains all the points in the euclidean plane that satisfy the
elliptic curve equation. Note that this does not mean that they are the only elements of
the set. As a matter of fact, we also include a special point O and refer to it as the
point at infinity. We will motivate the introduction of O in the next section. For
A,B ∈ R such that 4A3 + 27B2 6= 0, the underlying set of the group takes the form:

E = {(x, y) ∈ R2 | (y2 = x3 + Ax+B)} ∪ {O}.

We still need to define a suitable binary operation that acts on a not-necessarily
distinct pair of points in E. Any group must satisfy the closure axiom and so the output
of the binary operation must also be a point in E. Intuitively, the most natural way of
geometrically linking two points in the euclidean plane is with a straight line. It is
hence reasonable to look at the different configurations of pairs of points on an elliptic
curve defined on R. The diagram below summarizes the possible scenarios:

It is easy to observe that any two elliptic curve points must belong to one of these
categories. As a result, these categories are commonly exhaustive. The configurations
are also mutually exclusive. This should be clear except possibly for the case of an
inflection point. In what follows we argue that an elliptic curve point with ordinate
equals to 0 cannot be an inflection point.
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0-ordinate points vs. inflection points An inflection point (xi, yi) of a curve
y = f(x) is one where the curvature changes sign. Without delving deeper into the
notion of curvature, this means that the second derivative of y with respect to x
(assuming it exists on a neighborhood of xi) changes sign as the x values cross xi.
Intuitively, this suggests the following necessary conditions for a point on the curve
(where the second derivative is defined) to be an inflection point:

{ The second derivative d2(y)
dx2

(xi, yi) evaluated at (xi, yi) is equal to 0, and

{ sign [d
2(y)
dx2

(xi − ε, f(xi − ε)] 6= sign [d
2(y)
dx2

(xi + ε, f(xi + ε)], for ε infinitesimally
small.

However, an inflection point could still exist even when the second derivative is not
defined at that point. The definition remains the same, i.e., an inflection point is one
that marks a change in the curve’s concavity. As an example, one can look at the
function y = 3

√
x defined on R, and verify that the point (0, 0) is an inflection point

despite the fact that d2y
dx2

is not defined at x = 0.

The domain of definition of an elliptic curve over R consists of the set

D ≡ {x ∈ R | x3 + Ax+B ≥ 0}

This is due to the fact that over the field of real numbers, square values must be
non-negative. Consequently, y2 = x3 + Ax+B must be greater than or equal to 0. It
then holds that y = ±

√
x3 + Ax+B on D. As a result:

d2y
dx2

= ±[ −(3x2+A)2

4
√

(x3+Ax+B)3
+ 3x√

x3+Ax+B
]

The second derivative is defined on the set

D∗ ≡ {x ∈ R | x3 + Ax+B > 0}

Among other things, this means that the second derivative is not defined on curve
points whose ordinate is equal to 0. This however, is not enough to justify that
0-ordinate points are not inflection points. To rule out this possibility, we note that by
virtue of being a cubic equation, y = x3 + Ax+B = 0 can admit either one or three
roots (not necessarily distinct) in R. We can then classify non-singular elliptic curves on
R in two broad categories: disconnected or connected. The figures below showcase
an example of each:

12



2018 Bassam El Khoury Seguias c©

The curve f(x, y) = y2− x3 + 3x− 1 = 0 is an example of a non-singular disconnected
curve. These curves admit three distinct real roots, none of which are interior points of
the domain of definition D (we do not prove this statement). They are boundary points
and hence cannot be crossed from right to left or vice-versa. The same applies to the
connected curve f(x, y) = y2 − x3 + x− 1 = 0 which admits one real root instead of
three, but whose unique root is also a boundary point of D.

An implication of the aforestated definition is that the abscissa of an inflection point
of a curve in R2 must be an interior point of D. Indeed, one should be able to cross it in
order to validate a change in curvature. Consequently, points on the elliptic curve of the
form (x, 0) cannot be inflection points since their abscissas (i.e., the real roots of
x3 + Ax+B = 0), are boundary points of D.

Building the binary operation Having defined the possible configurations of a pair
of points on a non-singular elliptic curve on R, we now focus on finding a suitable
binary operation. More specifically, given two points on the curve (not-necessarily
distinct), our objective is to operate on them in such a way that the output is also a
point on the curve.

A rather natural way of doing so is to check if the line passing through the two points
intersects the curve at another point. In what follows, we consider each configuration
separately and demonstrate that the procedure outputs one or two suitable candidate
points. We then show that only one of the two points is permissible (whenever they
co-exist), paving the way to an algebraic description of the binary operation.

13
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Configuration #1: P ≡ (xp, yp) and Q ≡ (xq, yq) are two distinct points on the
elliptic curve such that xp 6= xq.

• The equation of the line joining P and Q is given by y = ( yq−yp
xq−xp )x+ (xqyp−xpyq

xq−xp ).

We let c = yq−yp
xq−xp , d = xqyp−xpyq

xq−xp and write y = cx+ d

• As a result, any point of intersection of this line with the elliptic curve must have
an abscissa that satisfies x3 + Ax+B − (cx+ d)2 = 0.

• This is a cubic polynomial on R and as noted earlier, can have either one or three
real roots (not necessarily distinct).

• We already know that xp and xq are two distinct real roots. Consequently, there
must exist a third root (not necessarily distinct from the other two) that we
denote by xp+q.

• We write (x− xp)(x− xq)(x− xp+q) = x3 + Ax+B − (cx+ d)2, which upon
expansion and coefficient comparison shows that xp+q = c2 − (xp + xq).

• Consequently, the point (xp+q, yp+q) ≡ (c2 − (xp + xq), c
3 − c(xp + xq) + d) is on

the curve.

• Due to x−axis symmetry, (xp+q,−yp+q) ≡ (c2 − (xp + xq),−c3 + c(xp + xq)− d) is
also on the curve. Later, we specify which of the two points is the eligible one.

• Here is the graph of an instance of this configuration for the following elliptic curve

E = {(x, y) ∈ R2 | (y2 − x3 + x− 1 = 0)} ∪ {O}.

14
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Configuration #2: P ≡ (xp, yp) and Q ≡ (xq, yq) are two distinct points on the
elliptic curve such that xp = xq (and hence yp 6= yq).

• The equation of the line joining P and Q is given by x = xp = xq.

• As a result, any point of intersection of this line with the elliptic curve must have
an ordinate that satisfies the equation y2 − (x3p + Axp +B) = 0.

• This is a quadratic polynomial in y on R. It either has no solution or admits two
not-necessarily distinct real roots.

• We already know that yp and yq are two distinct roots, and so we concude that
these are the only solutions to the equation.

• The logic of our construction requires that a viable binary operation involving two
roots yield a third one. Consequently, we add the point at infinity to the set of
eligible group elements and let P +Q = O. In this case we only have one elgible
candidate as opposed to two.

• Here is the graph of an instance of this configuration for the following elliptic curve

E = {(x, y) ∈ R2 | (y2 − x3 + x− 1 = 0)} ∪ {O}.

Configuration #3: The two points on the elliptic curve are identical and have an
ordinate equal to 0. We let the point be denoted by P ≡ (xp, 0).

• In the case of two distinct points, there was one and only one line that connected
them. A single point however, admits an infinity of lines that go through it. A
choice must hence be made.

• To do so, imagine that Q is a distinct point on the curve that is infinitesimally
close to P. In the limit as Q approaches P, the line connecting them converges to
the line of choice, i.e., the tangent to the elliptic curve at P.

15
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• Note that on the domain D of the elliptic curve, y = ±
√
x3 + Ax+B.

Consequently, dy
dx

= ± 3x2+A
2
√
x3+Ax+B

on D∗. The tangent to the elliptic curve at a
0-ordinate point is a vertical line. In particular, the equation of the tangent at
P ≡ (xp, 0) is given by x = xp.

• Any point of intersection of this tangent with the elliptic curve must have an
ordinate that satisfies the equation y2 − (x3p + Axp +B) = 0.

• This is a quadratic polynomial in y on R. It either has no solution or admits two
not-necessarily distinct real roots.

• We already know that yp = 0 is a root, hence so is −yp = 0. Consequently 0 is a
double root and as a result, the only solution to the equation.

• Following the same logic of configuration #2, we make use of O (the point at
infinity) and let P +Q = O. In this case too, we only have one eligible candidate
as opposed to two.

• Here is the graph of an instance of this configuration for the following elliptic curve

E = {(x, y) ∈ R2 | (y2 − x3 + x− 1 = 0)} ∪ {O}.

Configuration #4: The two points on the elliptic curve are identical and constitute
an inflection point. We let the point be denoted by P ≡ (xp, yp).

• Following the same logic of configuration #3, we choose the line tangent to the
elliptic curve at P.

• Without loss of generality let y =
√
x3 + Ax+B on D. Consequently,

dy
dx

= 3x2+A
2
√
x3+Ax+B

on D∗.

• Let z ≡ 3x2 + A. Hence dy
dx

= z
2y
. The equation of the tangent at P becomes

y = zp
2yp
x+ yp − zp

2yp
xp

16
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• Any point of intersection of this tangent with the elliptic curve must have
coordinates (x, y) that satisfy 4y2py

2 = (zpx+ 2y2p − zpxp)2. This can be simplified
to (x− xp)(z2p(x− xp) + 4y2pzp) = 4y2p(y

2 − y2p).

• We claim that this equation admits xp as a triple root. To see why, note that
d2y
dx2

= −(3x2+A)2

4
√

(x3+Ax+B)3
+ 3x√

x3+Ax+B
over D∗. This can be written as d2y

dx2
= − z2

4y3
+ 3x

y
.

• A necessary condition for a point on the curve (where the second derivative is
defined) to be an inflection point is that its second derivative be 0. Since P is
such a point, it must be that 12xpy

3
p = ypz

2
p . And since yp 6= 0, we get 12xpy

2
p = z2p .

• Substituting z2p with 12xpy
2
p in (x− xp)(z2p(x− xp) + 4y2pzp) = 4y2p(y

2 − y2p) yields
(x− xp)(12xpy

2
p(x− xp) + 4y2pzp) = 4y2p(y

2 − y2p). Since yp 6= 0, we can cancel the
4y2p factor from both sides and obtain (x− xp)(3xpx− 3x2p + zp) = (y2 − y2p).

• Substituting zp with 3x2p + A, and y2, y2p with their x and xp expressions, we get
(x− xp)(3xpx− 3x2p + 3x2p +A) = x3 +Ax+B − x3p −Axp −B. This is equivalent
to (x− xp)(3xpx) + A(x− xp) = x3 − x3p + A(x− xp).

• Canceling A(x− xp), we get x3 − 3x2xp + 3xx2p − x3p = 0. This is equivalent to
(x− xp)3 = 0. Consequently, xp is a triple root.

• Since a cubic equation has a maximum of three roots on R, xp is the only one.

• As a result, we could define a binary operation in one of two natural ways:
P + P = P or P + P = P ≡ (xp,−yp). Shortly, we will see why we choose the
latter.

• Here is the graph of an instance of this configuration for the following elliptic curve

E = {(x, y) ∈ R2 | (y2 − x3 + x− 1 = 0)} ∪ {O}.

17
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Configuration #5: The two points on the elliptic curve are identical, have non-zero
ordinate and are not an inflection point. We let the point be denoted by P ≡ (xp, yp).

• As in configuration #3, we choose the line tangent to the elliptic curve at P.

• On D∗, the tangent’s equation at P is y =
3x2p+A

2yp
x+ yp −

3x2p+A

2yp
xp. Letting

c =
3x2p+A

2yp
and d = yp −

3x2p+A

2yp
xp, we get y = cx+ d.

• As a result, any point of intersection of this line with the elliptic curve must have
an abscissa that satisfies x3 + Ax+B − (cx+ d)2 = 0

• This is a cubic polynomial on R and as noted earlier, can have either one or three
real roots (not necessarily distinct)

• We know that xp is a double real root, and so there must be a third root. We
denote it xp+p.

• We write (x− xp)(x− xp)(x− xp+p) = x3 + Ax+B − (cx+ d)2, which upon
expansion and coefficient comparison yields xp+p = c2 − 2xp.

• As a result, (xp+p, yp+p) ≡ (c2 − 2xp, c
3 − 2cxp + d) is on the curve. Due to x−axis

symmetry, (xp+p,−yp+p) ≡ (c2 − 2xp,−c3 + 2cxp − d) is also on the curve.

• Note that in configuration #1, if the resulting third root were equal to either xp
or xq (recall that P and Q have distinct absiscas), the outcome would be similar
to that of configuration #5.

• Here is the graph of an instance of this configuration for the following elliptic curve

E = {(x, y) ∈ R2 | (y2 − x3 + x− 1 = 0)} ∪ {O}.
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Choosing a candidate In configurations #1, #4 and #5, we ended-up with two
points (symmetric about the x-axis) to choose from with regard to the output of the
binary operation. Only one of them safeguards the group axioms. To see which one
does not, consider configuration #4:

• Suppose that we choose point P (as opposed to P ). That means that P + P = P.

• Consequently, P must be the identity of the group. We claim that this can not be.

• To see why, choose a curve point Q 6= P such that (P,Q) is not tangent to the
curve at Q.

• One can see that this is a special case of configuration #1 (if xp 6= xq) or of
configuration #2 (if xp = xq), and that the procedure previously described results
in candidates all of which are different than Q.

• As a result, P cannot be the identity element and is thus ruled out.

Defining the elliptic curve group We are now in a position to introduce the elliptic
curve group (E(R),⊕) on R and verify that it respects the abelian group axioms.

• For given A, B ∈ R such that 4A3 + 27B2 6= 0, the underlying set of the group is
defined to be:

E(R) = {(x, y) ∈ R2 | (y2 = x3 + Ax+B)} ∪ {O}.

• Let P ≡ (xp, yp) and Q ≡ (xq, yq) be points in E(R). We define the binary
operation ⊕ as follows:

{ If P 6= Q and xp 6= xq (i.e., configuration #1), let c = yq−yp
xq−xp , d = xqyp−xpyq

xq−xp ,

P ⊕Q ≡ (c2 − (xp + xq),−c3 + c(xp + xq)− d)

{ If P 6= Q and xp = xq (i.e., configuration #2),

P ⊕Q ≡ O

{ If P = Q and yp = yq = 0 (i.e., configuration #3),

P ⊕Q = P ⊕ P ≡ O

{ If P = Q and yp = yq 6= 0 (i.e., configurations #4 and #5), let c =
3x2p+A

2yp
,

d = yp −
3x2p+A

2yp
xp,

P ⊕Q ≡ (c2 − 2xp,−c3 + 2cxp − d)

• The point at infinity O is defined to be the identity element of the elliptic group.

(E(R),⊕) thus defined, satisfies the abelian group axioms:
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1. Associativity : Using the aforestated definition of ⊕, one can verify (with a bit of
patience and willingness to write down lengthy formulas) that

P,Q,R ∈ E(R)⇒ P ⊕ (Q⊕R) = (P ⊕Q)⊕R

2. Existence of identity : We defined O ∈ E(R) such that for all P ∈ E(R), we have

P ⊕O = O ⊕ P = P

Note that for any P,Q ∈ E(R) such that P 6= O, P +Q is never equal to Q. This
can be readily verified by checking each configuration separately.

3. Closure: By construction of ⊕, we made sure that the result of adding two points
on the elliptic curve is another point on the curve. In other terms

P,Q ∈ E(R)⇒ P ⊕Q ∈ E(R)

4. Existence of inverse: ∀P ≡ (xp, yp) ∈ E(R), the point P ≡ (xp,−yp) is also in
E(R). This is because the elliptic curve exhibits x-axis symmetry. Moreover, P
and P belong to either configuration #2 (if they are distinct) or configuration #3
(if they are identical) and so the definition of ⊕ ensures that

P ⊕ P = P ⊕ P = O

As a result, P is the inverse of P.

5. Commutativity : The definition of ⊕ implies that

P,Q ∈ E(R)⇒ P ⊕Q = Q⊕ P

4 Elliptic curve groups over finite fields

Going forward, we only consider finite fields of prime order p and do not cover extension
fields. A non-singular elliptic curve E defined over a finite field Fp of prime order
p /∈ {2, 3} differs from one defined over R in the following way:

1. The equation of the curve becomes E : y2 ≡ x3 + Ax+B (mod p) as opposed to
E : y2 = x3 + Ax+B

2. The parameters A and B are chosen in Fp as opposed to R

3. The discriminant must satisfy 4A3 + 27B2 6= 0 (mod p) as opposed to
4A3 + 27B2 6= 0

4. Points on E consist of tuples (x, y) ∈ F2
p such that y2 ≡ x3 + Ax+B (mod p).

This is in contrast to tuples (x, y) ∈ R2 such that y2 = x3 + Ax+B.

The main difference is that all computations are conducted in modulo p arithmetic. In
what follows, we depict the elliptic curve E : y2 ≡ x3 − x+ 1 (mod p) over F31 and over
F163. The geometry of elliptic curves over finite fields is not as intuitive as that of those
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over R. However, we will see that the algebraic formulation of their associated group
closely follows that of elliptic groups over R.

For example, in order to draw E : y2 ≡ x3 − x+ 1 (mod p) over F31, we select each
value of x in the set {0, 1, 2, ..., 30} and plug it into the expression x3 − x+ 1 (mod 31).
We subsequently check whether the result is a quadratic residue or not by verifying
whether ∃y ∈ {0, 1, 2, ..., 30} such that y2 (mod 31) is a match. We find that the
euclidean representation of this curve over F31 consists of the following 34 elements:

{(0, 1), (0, 30), (1, 1), (1, 30), (2, 10), (2, 21), (3, 5), (3, 26), (5, 11), (5, 20), (6, 5), (6, 26), (8, 3),
(8, 28), (9, 15), (9, 16), (11, 9), (11, 22), (16, 12), (16, 19), (18, 7), (18, 24), (20, 13), (20, 18),

(22, 5), (22, 26), (25, 15), (25, 16), (26, 6), (26, 25), (28, 15), (28, 16), (30, 1), (30, 30)}.

While on R the elliptic curve exhibited x-axis symmetry, on Fp it exhibits symmetry
about the horizontal line y = p

2
. Indeed, if (x, y) is a point on the curve, then so will

(x,−y + p). This is because (−y + p)2 (mod p) ≡ y2 + p2 − 2yp (mod p) ≡ y2 (mod p).

Formally, we denote by (E(Fp),⊕p) the group associated with an elliptic curve
defined over Fp. In particular:

• For p /∈ {2, 3} and for given A, B ∈ Fp such that 4A3 + 27B2 6= 0 (mod p) the
underlying set of the group is defined to be:

E(Fp) = {(x, y) ∈ F2
p | y2 ≡ x3 + Ax+B (mod p)} ∪ {O}.

• Let R ≡ (xr, yr) and Q ≡ (xq, yq) be points in E(Fp). We define the binary
operation ⊕p as follows:

{ If R 6= Q and xr 6= xq (mod p), let c ≡ yq−yr
xq−xr (mod p), d ≡ xqyr−xryq

xq−xr (mod p)

(division refers to multiplication by the inverse of the denominator over Fp),
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R⊕p Q ≡ (c2 − (xr + xq) (mod p),−c3 + c(xr + xq)− d (mod p))

{ If R 6= Q and xr ≡ xq (mod p),

R⊕p Q ≡ O

{ If R = Q and yr ≡ yq ≡ 0 (mod p),

R⊕p Q = R⊕p R ≡ O

{ If R = Q, yr 6= 0 (mod p), let c ≡ 3x2r+A
2yr

(mod p), d ≡ yr − 3x2r+A
2yr

xr (mod p)

(division means multiplication by the inverse of the denominator over Fp),

R⊕p Q ≡ (c2 − 2xr (mod p),−c3 + 2cxr − d (mod p))

• The point at infinity O is defined to be the identity element of the elliptic group.

To illustrate point addition in elliptic curve groups over finite fields, we look at
(E(F31),⊕31) and operate on points R ≡ (3, 26) and Q ≡ (28, 15). Since R 6= Q and
xr 6= xq (mod 31) we compute

• c ≡ yq−yr
xq−xr (mod p) ≡ 15−26

28−3 (mod 31) ≡ −11
25

(mod 31) ≡ −11× 5 (mod 31) = 7

where 5 is the inverse of 25 in modulo 31 arithmetic (recall that this can be
efficiently computed using the extended euclidean algorithm introduced in the
Groups and Finite Fields post).

• d ≡ xqyr−xryq
xq−xr (mod p) ≡ 28×26−3×15

28−3 (mod 31) ≡ 683× 5 (mod 31) = 5

We then compute R⊕31 Q ≡ (72 − (3 + 28) (mod 31),−73 + 7(3 + 28)− 5
(mod 31)) = (18, 24).

The construction of (E(Fp),⊕p) is similar to that of (E(R),⊕) except for the fact
that values are computed modulo p. (E(Fp),⊕p) thus defined, satisfies the abelian
group axioms:

1. Associativity : Using the aforestated definition of ⊕p, one can verify after lengthy
and tedious calculations that

Q,R, S ∈ E(Fp)⇒ Q⊕p (R⊕p S) = (Q⊕p R)⊕p S

2. Existence of identity : We defined O ∈ E(Fp) such that for all Q ∈ E(Fp), we have

Q⊕p O = O ⊕p Q = Q

3. Closure: By definition of ⊕p, the resulting output is either O or a tuple
(x, y) ∈ F2

p (since all arithmetic is conducted modulo p). Moreover, one can
readily use the definition of ⊕p to check that the result of the binary operation
always verifies the elliptic curve equation modulo p.. Consequently,

Q,R ∈ E(Fp)⇒ Q⊕p R ∈ E(Fp)
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4. Existence of inverse: ∀Q ≡ (xq, yq) ∈ E(Fp), the point Q ≡ (xq,−yq + p) is also in
E(Fp) due to symmetry about the line y = p

2
. And so the definition of ⊕p ensures

that

Q⊕p Q = Q⊕p Q = O

As a result, Q is the inverse of Q.

5. Commutativity : The definition of ⊕p implies that

Q,R ∈ E(Fp)⇒ Q⊕p R = R⊕p Q

ECDLP, cardinality, and point multiples in (E(Fp),⊕p). Recall that the
importance of elliptic curve groups over finite fields is largely derived from the
exponential hardness of the DL problem on them. The Elliptic Curve Discrete
Logarithm Problem (also known as ECDLP) can be stated as follows:

• Let E be an elliptic curve defined over a finite field Fp (i.e., A,B ∈ Fp such that
4A3 + 27B2 6= 0 (mod p))

E : y2 ≡ x3 + Ax+B (mod p)

• Let (E(Fp),⊕p) be the group associated with it, where

E(Fp) ≡ {(x, y) ∈ F2
p | y2 ≡ x3 + Ax+B (mod p)} ∪ {O}.

• Let Q,R ∈ E(Fp) and find the smallest integer m (if it exists) such that

R = m⊗p Q ≡ Q⊕p Q⊕p ... ⊕p Q (m times)

The notation m⊗p Q is unusual as it is commonly written as mQ. We decide to make
explicit the appearance of the operator ⊗p as a reminder that it is scalar multiplication
with respect to the binary operator ⊕p.

Finding such an m when it exists is thought to be exponentially hard. In the context
of crypto-assets, we don’t operate on the full set E(Fp). Rather, we choose an element
G ∈ E(Fp) such that order(G) is a very large prime. We then limit ourselves to the
subgroup ({G},⊕p) generated by G (refer to the post on Groups and Finite Fields for
an introduction to subgroups). Given G and M ∈ {G}, ECDLP now consists in finding
the smallest integer m such that M = m⊗p G. We are confident that such an m exists
since M ∈ {G}.

In the digital signature schemes used in e.g., Bitcoin and Monero, m represents the
private key and M the public one. It is important to derive M efficiently from m.
However, as we stated earlier, it must not be polynomially feasible to compute m from
M . The exponential hardness of ECDLP helps with the latter requirement. Moreover,
one can expect that the larger the set E(Fp), the better. This justifies the importance
of having a sense of the cardinality of E(Fp), also denoted #E(Fp). In order to ensure
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the former requirement, we need to have an efficient polynomial-time algorithm that
can compute multiples of G.

1. Cardinality of E(Fp) We previously saw (e.g., in the case of E(F31)) that not
every tuple (x, y) ∈ F2

p is necessarily an element of E(Fp). To get an upper-bound
on #E(Fp), note that for every x ∈ Fp one can have at most two values of y that
satisfy the elliptic curve equation E : y2 ≡ x3 + Ax+B (mod p).

If y is a solution, then so will −y + p. In addition, we have the point at infinity O.
As a result, since there are p distinct values in Fp, we get a maximum of 2p+ 1
points in E(Fp). Over Fp, p 6= 2, there are p−1

2
quadratic residues and an equal

number of quadratic non-residues (we don’t prove this statement in this post). As
a result, in the absence of any information, a random x ∈ Fp has equal probability
of being a square or not. One can then calculate the expected value of the number
of points in E(Fp) to be 2p

2
+ 1 = p+ 1. The German mathematician Helmut

Hasse showed that

|#E(Fp)− (p+ 1)| ≤ 2
√
p

The Dutch mathematician Ren Schoof, relied partly on Hasse’s theorem to devise
a deterministic algorithm that can compute #E(Fp) with complexity O(log9p).
This is known as the Schoof algorithm and its proof is beyond the scope of this
post (readers interested in learning more about it can consult [9]). The important
take-away is that there exists a polynomial-time algorithm to calculate the order
of an elliptic curve group over a finite field.

In so far as the structure of this group is concerned, we mention without proof
that (E(Fp),⊕p) is always either cyclic or the product of two cyclic groups.

2. Point multiplicity Suppose m is a very large integer, and G ∈ E(Fp) is as
defined earlier. In order to calculate m⊗p G ≡ G⊕p ... ⊕p G (m times), one can
do the following:

(a) Write m in its base 2 expansion

m = m0 +m1.2 + ... +mk.2
k, mi ∈ {0, 1} for i ∈ {0, ..., k − 1}, mk = 1

This can be achieved in O(log2(m))

(b) Subsequently, write m⊗p G as

m⊗p G = m0 ⊗p G+ 2m1 ⊗p G+ ... + 2kmk ⊗p G, mi ∈ {0, 1} for
i ∈ {0, ..., k − 1}, mk = 1

(c) Since the value 2kmk is equal to 2k, 2kmk ⊗p G can be evaluated by doubling
the point G (i.e., G⊕pG, then (G⊕pG) ⊕p (G⊕pG), ...) a total of k times.
In the process, we store the value of 2i for all i ∈ {0, ..., k} for which mi = 1.

(d) Putting it altogether, in order to caculate m⊗p G, one first needs O(log2(m))
steps to find mi, i ∈ {0, ..., k − 1}, then a total of k point doublings, and
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finally, a worst-case total of k additions. Hence, the worst-case complexity is
O(log2(m) + k + k). Noting that k is on the order of log2(m), the complexity
becomes O(3× log2(m)) = O(log2(m)).

The above procedure is known as the double-and-add method and ensures that
point addition can be efficiently carried on elliptic curves over finite fields.

3. A note on finding G A question of practical importance is whether one can
efficiently find an adequate point G ∈ E(Fp) such that its order is equal to a large
prime. This question is justified since finite fields of interst have an astronomically
large characteristic (usually larger that 2160) and one cannot expect to conduct an
exhaustive search on the underlying group. The answer turns out to be positive,
and one way of finding a suitable G is as follows:

3.1 Calculate #E(Fp) using Schoof’s polynomial-time algorithm.

3.2 Find a very large prime (ideally the largest) n that divides #E(Fp). Say
#E(Fp) = n× h. Note that the integer factorization problem is thought to
be hard. However, in some cases where the integer exhibits certain
properties, one can employ more efficient algorithms to identify a prime
factor. We will not go into the details of these algorithms but refer the
interested reader to e.g., [4] for an accessible overview.

3.3 Choose a random point Q ∈ E(Fp). We know that order(Q) = order({Q}).
By Lagrange’s theorem, the order of any subgroup divides the order of the
parent group. As a result, the order of Q must divide #E(Fp), and so

O = #E(Fp)⊗p Q = (n× h)⊗p Q = n⊗p (h⊗p Q).

3.4 Consequently, the order of the element h⊗p Q must divide n. Since n is
prime, the order of h⊗p Q can either be equal to 1 or n. If it is 1, then
h⊗p Q is the identity element O. In this case, we go back to step 3.3 and
choose a different point Q. Otherwise, we set G ≡ h⊗p Q which can be
computed efficiently using the aforementioned double-and-add method. We
refer to h as the cofactor of G.

5 Elliptic curve in Bitcoin

Bitcoin’s cryptography relies on a particular curve known as secp256k1:

• ”sec” is short for Standard for Efficient Cryptography. It refers to a set of
standards developed and published by the Certicom Research consortium [7].

• ”p” refers to the fact that the curve is defined over a finite field Fp of prime order
p.

• ”256” means that the curve points’ abscissas and ordinates are 256-bit long.

• ”k” states that the curve belongs to the Koblitz family. Usually, Koblitz curves
are defined over extension fields of characteristic 2 i.e., over F2k for some positive
integer k. However, the Bitcoin curve is defined over a prime field of characteristic
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p 6= 2. It belongs to a more general version of Koblitz curves. Without going into
further details, it suffices to say that for all practical matters, the importance of
this class of curves is derived from its higher efficiency in computing point
multiples on its associated group.

• ”1” is a reminder that it is the first curve of its kind that satisfies the previous
attributes.

The parameters of secp256k1 can be found on page 9 of [7] and are as follows:

• p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1, or in hexadecimal notation (hex)

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFE FFFFFC2F

Each element represents a half-byte (i.e., 4 bits) known as a nibble. There are 64
nibbles corresponding to the 256-bit representation mandated by the standard.

• A = 0, which in standard hex is given by

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

• B = 7, which in standard hex is given by

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000007

• Since p /∈ {2, 3}, and 4A3 + 27B2 6= 0 (mod p), the curve is non-singular and can
be written in short Weierstrass form. The resulting group is (E(Fp),⊕p), where

E(Fp) = {(x, y) ∈ F2
p | y2 ≡ x3 + 7 (mod p)} ∪ {O}.

Here is a euclidean representation of this curve when p = 163 (it is not feasible to
show it for p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1).
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• The base point G has abscissa and ordinate given by

xG ≡
55066263022277343669578718895168534326250603453777594175500187360389116729240

(mod p)

yG ≡
32670510020758816978083085130507043184471273380659243275938904335757337482424

(mod p)

which in standard hex notation are given by:

xG = 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9
59F2815B 16F81798

yG = 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419
9C47D08F FB10D4B8

Bitcoin’s public-key cryptography is hence conducted on the subgroup ({G},⊕p).

• The order of G is chosen to be a prime number equal to

n =
115792089237316195423570985008687907852837564279074904382605163141518161494337

(mod p)

which in standard hex notation is given by

n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B
BFD25E8C D0364141

• Recall that n denotes the order of G, and must divide #E(Fp) i.e., the order of

E(Fp). The cofactor h is equal to #E(Fp)

n
, which in this case is equal to 1 and is

represented in standard hex notation by

n = 0000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

That means that the order of G is equal to that of E(Fp), i.e., n = #E(Fp). Since
n is prime, the order of E(Fp) must also be prime. As a result, (E(Fp),⊕p) is a
cyclic group and any of its elements could serve as a generator (refer to Groups
and Finite Fields for an introduction to cyclic groups).

Another noteworthy SEC2 curve is secp256r1. The ’r’ specifier refers to the
attribute ”random” since the generation of the curve parameters A and B relies on a
supposedly random process involving a seed value fed to a hash function. The seed
value as well as the other curve attributes can be found on pages 9 and 10 of [7].
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There was a fair amount of questioning as to why Satoshi opted for the usage of
secp256k1 as opposed to that of another curve such as secp256r1. The reason(s) remain
obscure and advocates that favor one curve over the other abound (e.g., [5], [1]). The
point of contention lies in the randomness involved in selecting the curve parameters:

• On the one hand, Koblitz curves exhibit slightly weaker security than other curves
(although when using 256-bit long parameters, the difference is negligible).
Moreover, the National Institute of Standards and Technology or NIST (a US
governmental agency) has been advocating the usage of secp256r1 on the basis
that its parameters achieve very high security standards. Another common name
of this curve is NIST P-256, and constitutes one of fifteen curves that NIST
recommends.

• On the other hand, skeptics argue that NIST’s endorsement, coupled with the
absence of a rationale for the choice of the seed value are ground for dismissal.
According to them, it is possible that the NIST (and affiliated entities) might
have placed a backdoor to weaken the curve’s security standard. Their scepticism
is not unfounded since the NSA and NIST have previously planted a backdoor in
the elliptic curve algorithm known as Dual EC DRBG, which was validated by
memos leaked by Edward Snowden. The interested reader can refer to [11] for a
take on how the NSA might have accomplished this.

Suffice it to say that no one can tell with certainty whether one curve is preferred over
the other. Assuming no backdoor, both curves exhibit comparable security standards.

6 Elliptic curve in Monero

The NIST debacle surrounding the Dual EC DRBG algorithm pushed some people
away from NIST curves and closer to curves generated in academic circles instead. Two
such curves are Curve25519 and its next of kin ed25519 used in Monero. Both are
elliptic curves, but are not represented in short Weierstrass form. However, they could
be transformed into one and we will see how shortly.

Curve25519 was originally introduced by the German-American mathematician and
cryptologist Daniel Julius Bernstein. Unlike SEC curves and some of those advocated by
NIST, Curve25519 is thougt to be patent-free. It is also hailed for its faster computation
of point multiples when compared to e.g., sec256r1 (NIST P-256) [6]. Moreover, it
exhibits a security level comparable to that of secp256k1 and secp256r1 (assuming no
backdoors). These favorable attributes paved the way for its ever-increasing adoption.

We first provide an overview of Montgomery and Twisted Edward
representations of elliptic curves of which Curve25519 and ed25519 are respective
examples. We show that under certain constraints, any of these representations could
be transformed into a short Weierstrass counterpart using a specific isomorphism.
The existence of an isomorphism makes the two curves’ respective groups equivalent
and guarantees that the hardness of ECDLP is preserved on both. In the last section,
we introduce the attributes of Monero’s ed25519 curve.
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Twisted Edward and Montgomery representations A Twisted Edward curve
defined on a field K such that char(K) 6= 2 with parameters a ∈ K and d ∈ K such that
ad(a− d) 6= 0, is one that satisifies the following equation

EE
a,d : ax2 + y2 = 1 + dx2y2

It turns out that if in addition, a is a square in K and d is not, the curve will define a
group structure. For our purposes, on a finite field Fp, p > 2, such a curve will define a
group (EE

a,d(Fp),⊕Ep ) where the superscript E refers to ”Edward”. One could define the
binary operation ⊕Ep from basic principles as we did earlier for curves in short
Weierstrass form. However, we show shortly that each such Twisted Edward curve is
equivalent to another one in short Weierstrass form. The equivalence implicitly defines
a corresponding group structure associated with it. The underlying set of the group is
defined as

EE
a,d(Fp) ≡ {(x, y) ∈ F2

p | ax2 + y2 ≡ 1 + dx2y2 (mod p)}

Note that it does not contain a point at infinity. We will attempt to justify its absence
when we discuss the equivalence betwen curve representations.

A Montgomery curve defined on a field K such that char(K) 6= 2 with given
parameters α ∈ K and β ∈ K such that β(α2 − 4) 6= 0, is one that satisifies the following
equation

EM
α,β : βv2 = u3 + αu2 + u

The curve thus defined, admits a group structure assoiated with it. For our purposes,
on a finite field Fp, p > 2, this curve defines a group (EM

α,β(Fp),⊕Mp ) where the
superscript M refers to ”Montgomery”. Here too, one could define the binary operation
⊕Mp from basic principles using the chord and tangent method presented earlier for
Weierstrass curves in short form. However, we show shortly that every Montgomery
curve is equivalent to another one in short Weierstrass form. As is the case for Twisted
Edward curves, this equivalence implicitly defines a corresponding group structure
associated with it. The underlying set of the group is defined as

EM
α,β(Fp) ≡ {(u, v) ∈ F2

p | βv2 ≡ u3 + αu2 + u (mod p)} ∪ {OM}

Note that it contains a point at infinity denoted by OM . The need for such a point will
be addressed when we discuss the equivalence betwen curve representations.

Every Montgomery curve is equivalent to a short Weierstrass one Starting
with a Montgomery curve

EM
α,β(Fp) ≡ {(u, v) ∈ F2

p | βv2 ≡ u3 + αu2 + u (mod p)} ∪ {OM},

where β(α2 − 4) 6= 0 (mod p) (we will justify this constraint shortly), our objective is to
transform it into a short-form Weierstrass curve
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EW
A,B(Fp) ≡ {(x, y) ∈ F2

p | y2 ≡ x3 + Ax+ b (mod p)} ∪ {OW}

where the superscript W refers to Weierstrass. Moreover, it must be that p /∈ {2, 3} for
the short Weierstrass form to hold, and that 4A3 + 27B2 6= 0 (mod p) for it to be
non-singular.

The sought after transformation must map every point (u, v) on EM
α,β(Fp) to a point

(x, y) on EW
A,B(Fp). Let’s first exclude the point at infinity of EM

α,β(Fp) and focus on the
other points. Let’s substitute u with (xβ − α

3
) and v with yβ. This yields

β(y2β2) ≡ [(xβ − α
3
)]3 + α[(xβ − α

3
)]2 + (xβ − α

3
) (mod p)

⇐⇒ 27y2β3 ≡ (3xβ − α)3 + 3α(3xβ − α)2 + 9(3xβ − α) (mod p)

≡ 27x3β3 − 27x2β2α + 9xβα2 − α3 + 27x2αβ2 + 3α3 − 18α2xβ + 27xβ − 9α (mod p)

In order to make the coefficient of y2 equal to 1 (as mandated by the short Weierstrass
form), it must be that β 6= 0 (mod p) so that we can multiply both sides of the
equation by the modular inverse of 27β3. We get

y2 ≡ x3 − 9xβα2

27β3 + 2α3

27β3 + x
β2 − 9α

27β3 (mod p)

⇐⇒ y2 ≡ x3 + (3−α
2

3β2 )x+ (2α
3−9α
27β3 ) (mod p)

We recognize a short Weierstrass form with A ≡ 3−α2

3β2 and B ≡ 2α3−9α
27β3 . For it to be

valid, we still need to ensure that ∆ ≡ 4A3 + 27B2 6= 0 (mod p). This means that

4(3−α
2

3β2 )3 + 27(2α
3−9α
27β3 )2 6= 0 (mod p)

⇒ 4(3− α2)3 + (2α3 − 9α)2 6= 0 (mod p)⇒ α2 6= 4 (mod p)

The constraints β 6= 0 (mod p) and α2 6= 4 (mod p) can be combined into a single one
given by β(α2 − 4) 6= 0 (mod p). This explains its inclusion earlier when we defined the
Montgomery form.

The above derivation mapped every point of the Montgomery curve to a point on the
short-Weierstrass curve. Note that the point at inifnity OW of the short-Weierstrass
form was not attained by the previous transformation. As a result, we define a point at
infinity OM on the Montgomery curve and map it to OW . Consequently, we get the
following injective map:

φ : EM
α,β(Fp)→ EW

A,B(Fp)

(u, v)→ (x, y) ≡ φ(u, v) = (u
β

+ α
3β
, v
β
), if (u, v) 6= OM

OM → φ(OM) = OW
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In order to show that this map is a bijection, we must demonstrate that it has an
inverse. We claim that given α, β ∈ Fp such that β(α2 − 4) 6= 0 (mod p), the short

Weierstrass form EW
A,B : y2 ≡ x3 + (3−α

2

3β2 )x+ 2α3−9α
27β3 (mod p) can be transformed into

the Montgomery curve EM
α,β : βv2 ≡ u3 + αu2 + u (mod p). Here, parameters A and B

are respectively given by (3−α
2

3β2 ) and (2α
3−9α
27β3 ).

This can be readily verified by substituting x with u
β

+ α
3β

and y with v
β
. This

substitution shows that every point on the given short Weierstrass form is mapped to a
point on the Montgomery curve. The only point left out is OW , which we then map to
OM . As a result, we get the following inverse transformation:

φ−1 : EW
A,B(Fp)→ EM

α,β(Fp)

(x, y)→ (u, v) ≡ φ−1(x, y) = (xβ − α
3
, yβ), if (x, y) 6= OW

OW → φ−1(OW ) = OM

Note that with the exception of OW and OM , the map φ (and its inverse) have their
two components expressed as a rational fraction in Fp. Such transformations are known
as birational maps. As a result, the bijection between a Montgomery form and its
associated short Weierstrass form is also referred to as a birational equivalence. One
important observation is that any Montgomery form can be transformed into a short
Weierstrass curve. However, the reverse is not always possible. We will not define the
constraints that must be imposed on a short Weierstrass curve to admit a Montgomery
counterpart. Suffice it to say that the specific values of A and B previously used satisfy
the required constraints.

Equivalence of (certain) Twisted Edward and (certain) Montgomery curves
Starting with a Twisted Edward curve

EE
a,d(Fp) ≡ {(x, y) ∈ F2

p | ax2 + y2 ≡ 1 + dx2y2 (mod p)},

where ad(a− d) 6= 0 (mod p), and requiring additionally that a be a quadratic residue
over Fp and d a quadratic non-residue (we will justify these constraints shortly), our
objective is to transform it into a Montgomery curve given by

EM
α,β(Fp) ≡ {(u, v) ∈ F2

p | βv2 ≡ u3 + αu2 + u (mod p)} ∪ {OM},

where β(α2 − 4) 6= 0 (mod p), i.e., β 6= 0 (mod p) and α (mod p) /∈ {−2, 2}.

The transformation must map every point (x, y) on EE
a,d(Fp) to a point (u, v) on

EM
α,β(Fp). To do so, let’s substitute x with u

v
and y with u−1

u+1
. This substitution attains

every point on the Montgomery curve except for the following points:

1. The point at infinity OM .

2. Points with v ≡ 0 (mod p) : The equation of a Montgomery elliptic curve would
then dictate that u(u2 + αu+ 1) ≡ 0 (mod p). This in turn means that u ≡ 0
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(mod p) or (u2 + αu+ 1) ≡ 0 (mod p). To minimize the number of points on the
Montgomery curve that are not attained, we require that the quadratic equation
u2 + αu+ 1 admit no solution in Fp. In order to ensure that, the discriminant
α2 − 4 must be a quadratic non-residue over Fp. Consequently, the only point to
exclude from the Montgomery curve in this case is (u, v) ≡ (0, 0).

3. Points with u ≡ −1 (mod p) : The equation of a Montgomery elliptic curve would
then dictate that βv2 ≡ α− 2 (mod p). Since β 6= 0 (mod p), this becomes
v2 ≡ α−2

β
(mod p). To minimize the number of points on the Montgomery curve

that are not attained, we require that α−2
β

also be a quadratic non-residue over Fp.

The change of variable dictates that if u 6= 0 (mod p), then x 6= 0 (mod p).
Consequently, we must exclude the points on the Twisted Edward curve that have
x ≡ 0 (mod p). One can readily verify that these are the points (x, y) ≡ (0, 1) and
(x, y) ≡ (0,−1). So let’s apply the variable substitution, keeping these two points out
for now. We will treat them separately in a moment.

ax2 + y2 ≡ 1 + dx2y2 (mod p) ⇐⇒ a(u
v
)2 + (u−1

u+1
)2 ≡ 1 + d(u

v
)2(u−1

u+1
)2 (mod p)

And since we excluded the cases v ≡ 0 (mod p) and u ≡ −1 (mod p), we get

⇐⇒ au2(u+ 1)2 + v2(u− 1)2 ≡ v2(u+ 1)2 + du2(u− 1)2 (mod p)

⇐⇒ (a− d)u4 + (2a+ 2d)u3 + (a− d)u2 − 4uv2 ≡ 0 (mod p)

Since u 6= 0 (mod p), we can multiply both sides of the equation by the modular inverse
of u and get

(a− d)u3 + (2a+ 2d)u2 + (a− d)u ≡ 4v2 (mod p)

To ensure that the coefficient of u3 is equal to 1 as mandated by the Montgomery form,
we must have a 6= d (mod p) so that we can multiply both sides of the equation by the
modular inverse of (a− d). In this case, we obtain

( 4
a−d)v2 ≡ u3 + (2a+2d

a−d )u2 + u (mod p)

We recognize the Montgomery elliptic curve form with α ≡ 2a+2d
a−d and β ≡ 4

a−d .
However, we must still make sure that β(α2 − 4) 6= 0 (mod p) as mandated by the
definition of a Montgomery form. Clearly, β ≡ 4

a−d 6= 0 (mod p). We only need to make

sure that α2 − 4 6= 0 (mod p). This translates to (2a+2d
a−d )2 − 4 6= 0 (mod p), which

implies that ad 6= 0 (mod p).

To sum-up, the variable substitution that we introduced defines a map from
EE
a,d(Fp)− {(0, 1), (0,−1)} to EM

α,β(Fp)− {(0, 0), OM} given by

(u, v) ≡ ψ(x, y) = (1+y
1−y ,

1+y
x(1−y)). The constraints that need to be observed are the

following:

1. α−2
β

must be a quadratic non-residue over Fp. In terms of the Twisted Edward
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curve parameters a and d, this translates to (2a+2d
a−d − 2)/ 4

a−d = d being a quadratic
non-residue.

2. (α2− 4) must be a quadratic non-residue over Fp. This means that [(2a+2d
a−d )2− 4] is

a quadratic non-residue. Consequently, 16ad
(a−d)2 must be a quadratic non-residue.

Since 16 and (a− d)2 are both quadratic residues, it must be that ad is a
quadratic non-residue. Now note that if both a and d were squares, then so will
ad. Moreover, if a and d were both non-squares, there could still be a possibility
that ad is a square (as an example, take the elements 3 and 5 over F7 which are
both quadratic non-residues but their product is a square). As a result, we require
that if a is a square then d be not and vice-versa. Since we saw that d is a
quadratic non-residue, then we require that a be a quadratic residue.

3. a 6= d (mod p) and ad 6= 0 (mod p). We can combine both constraints into a
single one ad(a− d) 6= 0 (mod p).

Finally, note that we left out two points on the Twisted Edward curve, namely
(x, y) ≡ (0, 1) and (x, y) ≡ (0,−1). Observe however, that on the Montgomery elliptic
curve, we also have two points that were not covered, namey the point (u, v) ≡ (0, 0)
and the point at infinity OM . We thus define the following injective transformation:

ψ : EE
a,d(Fp)→ EM

α,β(Fp)

(x, y)→ (u, v) ≡ ψ(x, y) = (1+y
1−y ,

1+y
x(1−y)), if (x, y) /∈ {(0, 1), (0,−1)}

(0,−1)→ ψ(0,−1) = (0, 0)

(0, 1)→ ψ(0, 1) = OM

Conversely, starting with the Montgomery curve

EM
α,β(Fp) ≡ {(u, v) ∈ F2

p | βv2 ≡ u3 + αu2 + u (mod p)} ∪ {OM},

where β(α2 − 4) 6= 0 (mod p), (α−2
β

) and (α2 − 4) are both quadratic non-residues over
Fp, we can show that it can be transformed into a Twisted Edward curve of the form

EE
a,d(Fp) ≡ {(x, y) ∈ F2

p | ax2 + y2 ≡ 1 + dx2y2 (mod p)},

where ad(a− d) 6= 0 (mod p).

To do so, we make use of the inverse of the previous substitution. We substitute u
with (1+y

1−y ) and v with ( 1+y
x(1−y)). Clearly, these are defined for all points (x, y) as long as

x 6= 0 (mod p) and y 6= 1 (mod p). But note that x ≡ 0 (mod p) corresponds to y2 ≡ 1
(mod p). In other words, points (0, 1) and (0,−1) of the Twisted Edward curve cannot
be attained by the map defined by this substitution. Note also that the change of
variable dictates that if x 6= 0 (mod p), y 6= −1 (mod p), and y 6= 1 (mod p), then
u, v 6= 0 (mod p) :
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1. Case u ≡ 0 (mod p) : Since β 6= 0 (mod p), the Montgomery form dictates that
v ≡ 0 (mod p). As a result the point (0, 0) of the Montgomery curve must be
excluded.

2. Case v ≡ 0 (mod p) : The Montgomery form dictates that u(u2 + αu+ 1) ≡ 0
(mod p). And so u ≡ 0 (mod p) or u2 + αu+ 1 ≡ 0 (mod p). Since we assumed
that (α2 − 4) is a quadratic non-residue, the discrimant of (u2 + αu+ 1) cannot be
a square. Hence, this quadratic has no roots over Fp.

Consequently, the only two points of the Montgomery curve that are not covered by this
substitution are the point at infinity OM and the point (0, 0). We will deal with them
separately. After applying the change of variable, we get

β( 1+y
x(1−y))

2 ≡ (1+y
1−y )3 + α(1+y

1−y )2 + (1+y
1−y ) (mod p)

After simplication, we obtain

β(1 + y)(1− y2) ≡ [(2 + α)x2 + (2− α)x2y2](1 + y) (mod p)

Since y 6= −1 (mod p) and β 6= 0 (mod p), we simplify further and obtain

(2+α
β

)x2 + y2 ≡ 1− (2−α
β

)x2y2

We recognize this as a Twisted Edward form with a = 2+α
β

and d = α−2
β
. This is a valid

representation because

1. ad = (2+α
β

)(α−2
β

) = α2−4
β2 6= 0 (mod p) (since (α2 − 4) 6= 0 (mod p) for a

Montgomery curve).

2. a− d = 4
β
6= 0 (mod p)

We then get the following inverse transformation:

ψ−1 : EM
α,β(Fp)→ EE

a,d(Fp)

(u, v)→ (x, y) ≡ ψ−1(u, v) = (u
v
, u−1
u+1

), if (u, v) 6= (0, 0)

(0, 0)→ ψ−1(0, 0) = (0,−1)

OM → ψ−1(OM) = (0, 1)

The maps ψ and ψ−1 demonstrate the existence of a birational equivalence between the
following two sets:

1. Twisted Edward curves with ad(a− d) 6= 0 (mod p), a a quadratic residue and d a
quadratic non-residue over Fp

2. Montgomery curves with β(α2 − 4) 6= 0 (mod p), (2+α
β

) a quadratic residue and

(α−2
β

) a quadratic non-residue over Fp.
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Finally, note that one could transform such a Twisted Edward curve into a short form
Weierstrass curve by applying the composition map φ ◦ ψ. Readers interested in
learning more about Twisted Edward curves can consult [2].

Monero’s curve The elliptic curve cryptography used by Monero [8] relies on a
particular Twisted Edward curve known as ed25519 [3]. It has the following attributes:

• p is the prime number given by 2255 − 19, explaining the suffix in the curve’s
name. It defines the underlying finite field Fp. In hex notation using 256 bit-long
representation, it is given by

p = 7FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFED

• a ≡ −1 (mod p). In standard hex notation, it is given by

a = 7FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFEC

• d ≡ −121665
121666

(mod p). In standard hex notation, it is given by

d = 52036CEE 2B6FFE73 8CC74079 7779E898 00700A4D 4141D8AB 75EB4DCA
135978A3

Since p 6= 2 and ad(a− d) 6= 0 (mod p), this curve qualifies as a Twisted Edward
curve. Moreover, a is a quadratic residue over Fp while d is not. Consequently,
this curve admits a birationally equivalent Montgomery form known as
Curve25519. The underlying set of the group associated with this Twisted
Edward curve is given by

EE
a,d(Fp) ≡ {(x, y) ∈ F2

p | − x2 + y2 ≡ 1− (121665
121666

)x2y2 (mod p)}

Here is a euclidean representation of this curve when p = 163 (it is not feasible to
show it for the value of p = 2255 − 19).
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• The base point G has abscissa and ordinate given by

xG ≡
15112221349535400772501151409588531511454012693041857206046113283949847762202

(mod p)

yG ≡ 4
5

(mod p) ≡
46316835694926478169428394003475163141307993866256225615783033603165251855960

(mod p)

which in standard hex notation are given by:

xG = 216936D3 CD6E53FE C0A4E231 FDD6DC5C 692CC760 9525A7B2
C9562D60 8F25D51A

yG = 66666666 66666666 66666666 66666666 66666666 66666666 66666666
66666658

Monero’s public-key cryptography is hence conducted on the subgroup whose
underlying set is {G}.

• The order of G is chosen to be a prime number equal to

n ≡ 2252 + 27742317777372353535851937790883648493 (mod p)

Which in standard hex notation is given by

n = 10000000 00000000 00000000 00000000 14DEF9DE A2F79CD6 5812631A
5CF5D3ED

• Recall that n denotes the order of G, and must divide #EE
a,d(Fp) i.e., the order of
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EE
a,d(Fp). The cofactor h is equal to

#EE
a,d(Fp)

n
which in this case evaluates to 8. It is

represented in standard hex notation by

h = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000008
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