
Monero’s Building Blocks
Part 7 of 10 – Multilayered Linkable Spontaneous
Anonymous Group (MLSAG) signature scheme

Bassam El Khoury Seguias
BTC: 3FcVvBZwTUkUrcqJd16RcjR42qT2tDWHWn

ETH: 0xb79Fb9194C8Cc6221368bb70976e18609Ab9AcA8

April 16, 2018

1 Introduction

Monero stands out from other cryptocurrencies in its ability to hide the signer, conceal
the transaction amount, and protect the identity of the recepient. Parts 1 to 6 helped us
build the foundation to better understand and appreciate the security properties of ring
signatures (albeit in the RO model). Parts 7, 8, and 9 will focus on Monero’s privacy
in so far as the signer’s identity and the transaction amount are concerned. Part 10
will introduce stealth addressing as a mechanism to protect the identity of the fund’s
recepient.

In order to describe how a Monero transaction hides both the signer’s identity and the
amount of the transaction, we introduce 2 additional concepts:

1. A generalization of the LSAG signature scheme (introduced in part 6) so that each
member of the ring can have a key-pair vector [(pk1, sk1), ..., (pkn, skn)] instead of
only one pair (pk, sk)

2. A particular map known as the Pedersen Commitment that will be used to hide
transaction amounts while allowing the network to check that input and output
amounts always balance out.

Recall that by proving that a digital signature scheme was unforgeable, one gets the
assurance that only the signing algorithm Σ associated with a given ring member can
produce a valid signature (i.e., verified by V). Any other procedure that bypasses Σ will
result in a failed attempt of forgery with overwhelming probability. We note the following
about the verification process of V :

• In a ”non-ring” setting, the verification is done using a particular public key pkπ.
The validation of a given signature proves that the signer of the message (in this
case user π) knows the secret key skπ associated with pkπ. Assuming that secret
keys are safe-guarded and non-compromised, this actually proves that the user with
key-pair (pkπ, skπ) signed the message.

1

2018 Bassam El Khoury Seguias c©

• In a ring setting, the verification is conducted using a public key vector L ≡
[pk1, ..., pkπ, ..., pkn] known as a ring. This vector is used to conceal the identity of
the signer. The validation of a given signature proves that the the signer of the
message (in this case user π) knows the secret key associated with one of the public
keys in L. Assuming that secret keys are safe-guarded and non-compromised, this
actually proves that the user with key-pair (pkπ, skπ) signed the message, for some
index 1 ≤ π ≤ n that no one other then the actual signer knows.

• The ring setting can be generalized further by allowing each ring member i, 1 ≤
i ≤ n to have a key-pair vector of length m, given by [(pk1

i , sk
1
i), ..., (pk

m
i , sk

m
i)], as

opposed to a unique key pair (pki, ski). In this setting, the verification is conducted
using a public key matrix

PK =

pk1
1 ... pk1

π ... pk1
n

...
pkm1 ... pkmπ ... pkmn

The validation of the signature proves that the signer knows the secret key asso-
ciated with each one of its public keys. In other terms, there exists a column in
PK (say column 1 ≤ π ≤ n) such that the signer knows the secret key associ-
ated with each public key appearing in that column. Assuming that secret keys are
safe-guarded and non-compromised, this actually proves that the user with key-pair
vector [(pk1

π, sk
1
π), ..., (pkmπ , sk

m
π)] signed the message, for some 1 ≤ π ≤ n that no

one other then the actual signer knows.

2 The MLSAG scheme

The MLSAG signature scheme is a generalization of the LSAG scheme encountered earlier
in part 6. It was introduced by Shen Noether in his 2016 paper entitled ”Ring Confidential
Transactions” [3]. MLSAG security analysis closely mirrors that of the LSAG scheme.
Although the security proofs are similar, we will go over them again in detail to highlight
the nuances pertaining to the generalization.

Similar to the LSAG version introduced in part 6, MLSAG is built on a group E of
prime order q and uses 2 statistically independent ROs:

• H1 : {0, 1}∗ −→ Fq

• H2 : {0, 1}∗ −→ E

We carry forward all the notation used in the Cryptonote scheme and the LSAG scheme.
In particular, we let E be a large finite group generated by the same elliptic curve intro-
duced in part 5. The curve’s equation is given by:

E : −x2 + y2 = 1 + dx2y2

For completeness purposes, we recall that the above equation is a polynomial over Fq
where q is a very large prime and d is a pre-defined element of Fq. We simplify the
notation and refer to the group generated by this elliptic curve as E(Fq) (refer to the

2

2018 Bassam El Khoury Seguias c©

post entitled Elliptic Curve Groups for an introduction to this topic). We also observe
the following:

• Elements of E(Fq) are pairs (x, y) ∈ F2
q that satisfy the above equation.

• Elliptic curve groups in general and E(Fq) in particular have a well defined
addition operation that we denote by ⊕.

• E(Fq) contains a special element G (not necessarily unique) that we refer to as
the base point. The base point has order l < q, where l is a very large prime.
That means that adding G to itself l times yields the identity element e of E(Fq).
In other terms, G⊕ ...⊕G = e. We simply write l ⊗G = e (the notation ⊗ serves
as a reminder that this is scalar multiplication associated with ⊕).

• We let {G} denote the group generated by G under the ⊕ operation of E(Fq). We
also let {G}∗ ≡ {G} − e.

• Solving the Discrete Logarithm (DL) problem on {G}∗ (and more generally on
E(Fq)) is thought to be intractable.

With a slight divergence from [3], we first introduce a hash function HT before we
define H2. The reason is the same as the one we previously articulated in parts 5 and 6
and will be highlighted in section 4 when we build the signing simulator to prove
MLSAG’s resilience against EFACM.

• H1 : {0, 1}∗ −→ Fq

• HT : {G}∗ −→ F∗l × {G}∗

HT takes an element s ∈ {G}∗ and outputs a tuple (vs, vs ⊗G) ∈ F∗l × {G}∗.
Here vs is a random element chosen according to a uniform distribution over F∗l .
We then let H2(s) ≡ vs ⊗G. So H2 : {G}∗ −→ {G}∗, takes an element s ∈ {G}∗
and returns an element vs ⊗G ∈ {G}∗ where vs is randomly chosen in F∗l .

Note that [3] defines H2 as a map from {0, 1}∗ to E ≡ EC(Fq). Here we restricted
the domain and the range to {G}∗ instead. This is because in our exposition, H2

is strictly applied to public keys as opposed to any element of {0, 1}∗. Public keys
are elements of E(Fq) that are scalar multiples of the base point G. Moreover, the
scalar is never equal to order(G) = l (we impose this constraint when we
introduce the key generation algorithm G). We are then justified in restricting the
domain to {G}∗. The range is arbitrarily defined to be {G}∗, which is permissible
since it preserves the injective nature of the map.

The MLSAG scheme is defined by a set of 4 algorithms:

• The key generation algorithm G. On input 1k (k is the security parameter
that by design we request to satisfy k < log2|{G}∗| = log2(l − 1)), it produces a
key-pair vector [(sk1, pk1), ..., (skm, pkm)] ≡ [(x1, y1), ..., (xm, ym)] of matching
secret and public keys. ∀j ∈ {1, ...,m}, xj is randomly chosen in
F∗l ≡ {1, ..., l − 1}, and yj is calculated as xj ⊗G. (Note that G and yj are both
elements of {G}∗ ⊂ EC(Fq) while xj is an element of F∗l ⊂ Fq.

3

2018 Bassam El Khoury Seguias c©

In addition to the [(x1, y1), ..., (xm, ym)] key-pair vector, G computes
Ij ≡ xj ⊗H2(yj), ∀j ∈ {1, ...,m}. I ≡ [I1, ..., Ij] is known as the key image vector
(or tag vector). It is signer-specific since it depends only on the signer’s private
and public keys. It allows the ring linkability algorithm L to test for independence
between different signatures. G is modeled as a PPT Turing machine.

Suppose we have a ring of n members, each with m keys as described above. The
objective of the MLSAG scheme is two-fold:

1. To demonstrate that one of the signers knows all the secret keys associated
with her key-pair vector.

2. To ensure that if the signer uses at least one of their m secret keys in a
different signature, then the 2 signatures will be flagged as linked and proper
measures taken.

• The ring signing algorithm Σ. Suppose a user Aπ decides to sign a message m
on behalf of the ring {A1, ., An} 3 Aπ. Aπ has key-pair vector [(x1

π, y
1
π), ., (xmπ , y

m
π)]

and key-image vector Iπ ≡ [(x1
π ⊗H2(y1

π)), ..., (xmπ ⊗H2(ymπ))]. Moreover, the
public key matrix associated with the ring of users is given by:

PK =

pk1
1 ... pk1

π ... pk1
n

...
pkm1 ... pkmπ ... pkmn

Σ does the following:

1. ∀j ∈ {1, ...,m}, choose random qjπ ∈ {1, ..., l} ≡ Fl. Assign:

{ Ljπ ≡ (qjπ ⊗G)

{ Rj
π ≡ (qjπ ⊗H2(yjπ))

2. cπ+1 ≡ H1(m,L1
π, R

1
π, ..., L

m
π , R

m
π) (mod l)

3. ∀i ∈ {π + 1, .., n, 1, .., π − 1}:

{ ∀j ∈ {1, ...,m}, choose random rji ∈ {1, ...l} ≡ Fl. Assign:

{ Lji ≡ (rji ⊗G) ⊕ (ci ⊗ yji)

{ Rj
i ≡ (rji ⊗H2(yji)) ⊕ (ci ⊗ Ijπ)

{ ci+1 ≡ H1(m,L1
i , R

1
i , ..., L

m
i , R

m
i) (mod l), where c1 ≡ cn+1

4. ∀i ∈ {π + 1, .., n, 1, .., π − 1}, set rjπ ≡ qjπ − cπxjπ (mod l) . Here cπx
j
π denotes

regular scalar multiplication in modulo l arithmetic.

Σ outputs a signature σπ(m,PK) ≡ (I1
π, ..., I

m
π , c1, r

1
1, ..., r

m
1 , ..., r

1
n, ..., r

m
n). Σ is a

PPT algorithm. We note that one drawback of the MLSAG scheme is the size of

4

2018 Bassam El Khoury Seguias c©

the signature. An increase of the ring size by one unit corresponds to an increase
of m units in the size of the signature. This constraint limits the usage of large
ring sizes in practice.

• The ring verification algorithm V . Given a message m, a pubic key matrix of
the ring members given by:

PK =

pk1
1 ... pk1

π ... pk1
n

...
pkm1 ... pkmπ ... pkmn

and a signature σ(m,PK) ≡ (I1, ..., Im, c1, r

1
1, ..., r

m
1 , ..., r

1
n, ..., r

m
n):

{ Let c′1 = c1

{ ∀i ∈ {1, .., n}:

{ ∀j ∈ {1, ...,m}, compute:

{ (Lji)
′ ≡ (rji ⊗G) ⊕ (ci ⊗ yji)

{ (Rj
i)
′ ≡ (rji ⊗H2(yji)) ⊕ (ci ⊗ Ij)

{ c′i+1 ≡ H1(m, (L1
i)
′, (R1

i)
′, ..., (Lmi)′, (Rm

i)′) (mod l)

{ V checks if c1 = c′n+1 (c′n+1 ≡ H1(m, (L1
n)′, (R1

n)′, ., (Lmn)′, (Rm
n)′) (mod l))

If equality holds, the signature is valid and V outputs True. Otherwise, it outputs
False. V is a deterministic algorithm.

• The ring linkability algorithm L. It takes a V-verified valid signature
σ(m,PK). It checks if any component of the key-image vector I was used in the
past by comparing it to previous key-image vector components stored in a set I.
If a match is found, then with overwhelming probability the 2 signatures were
produced by the same key-pair vector (as will be justified when we prove the
exculpability of MLSAG in section 5 below), and L outputs Linked. Otherwise, its
key-image vector is added to I and L outputs Independent.

3 Security analysis - Correctness

Let σπ(m,PK) ≡ (I1
π, ..., I

m
π , c1, r

1
1, ..r

m
1 , ...r

1
n, ..., r

m
n) be a Σ-generated signature.

Without loss of generality, assume 1 < π ≤ n. Then ∀i, 1 ≤ i < π, we have the following
implication:

If {(c′i = ci) ∩ ((Lji)
′ = Lji , ∀j ∈ {1, ...,m}) ∩ ((Rj

i)
′ = Rj

i , ∀j ∈ {1, ...,m})}, then:

{ c′i+1 = H1(m, (L1
i)
′, (R1

i)
′, ., (Lmi)′, (Rm

i)′) (mod l) = H1(m,L1
i , R

1
i , ., L

m
i , R

m
i)

(mod l) = ci+1

5

2018 Bassam El Khoury Seguias c©

and ∀j ∈ {1, .,m}:

{ (Lji+1)′ ≡ (rji+1 ⊗G)⊕ (c′i+1 ⊗ y
j
i+1) = (rji+1 ⊗G)⊕ (ci+1 ⊗ yji+1) = Lji+1

{ (Rj
i+1)′ ≡ (rji+1 ⊗H2(yji+1))⊕ (c′i+1 ⊗ Ijπ) = (rji+1 ⊗H2(yji+1))⊕ (ci+1 ⊗ Ijπ) = Rj

i+1

Recall that c′1 = c1 (by design of V) and so ∀j ∈ {1, ...,m}, (Lj1)′ = Lj1 and (Rj
1)′ = Rj

1.
We therefore conclude by induction on c′i that ∀i 1 ≤ i ≤ π, c′i = ci. In particular,
c′π = cπ. This implies that ∀j ∈ {1, .,m}:

{ (Ljπ)′ = (rjπ ⊗G)⊕ (c′π ⊗ yjπ) = ((qjπ − cπxjπ)⊗G)⊕ (cπ ⊗ yjπ) = qjπ ⊗G = Ljπ

{ (Rj
π)′ = (rjπ ⊗H2(yjπ))⊕ (c′π ⊗ Ijπ) = ((qjπ − cπxjπ)⊗H2(yjπ))⊕ (cπ ⊗ Ijπ) =

qjπ ⊗H2(yjπ) = Rj
π

We can then invoke a similar induction argument on c′i as the one stated earlier, but
this time for π ≤ i ≤ n. We therefore conclude that:

c1 ≡ cn+1 ≡ H1(m,L1
n, R

1
n, ..., L

m
n , R

m
n) (mod l) (by design of Σ)

= H1(m, (L1
n)′, (R1

n)′, ..., (Lmn)′, (Rm
n)′) (mod l) (by induction proof showing that

∀j ∈ {1, ...,m}, (Ljn)′ = Ljn and (Rj
n)′ = Rj

n)

= c′n+1

Subsequently, any Σ-generated signature will satisfy V ’s verification test.

4 Security analysis - Unforgeability vis-a-vis

EFACM

For unforgeability proofs, we follow the 5-step approach outlined earlier in part 1.
(Recall that for ring signatures, we prove resilience against EFACM with respect to a
fixed ring attack as described in part 3 of this series. The nuance here is that we have a
fixed public key matrix PK, as opposed to a fixed public key vector L).

Step 1 : To prove that this scheme is secure against EFACM in the RO model, we
proceed by contradiction and assume that there exists a PPT adversary A such that:

Pω,r,H1,HT [A(ω)H1,HT ,ΣH1,HT (r) succeeds in EFACM] = ε(k), for ε non-negligible in k.

Step 2 : Next, we build a simulator S(r′) such that it:

• Does not have access to any component of the private key vector of any signer.

• Has the same range as the original signing algorithm Σ (i.e., they output
signatures taken from the same pool of potential signatures over all possible
choices of RO functions and random tapes r′ and r).

6

2018 Bassam El Khoury Seguias c©

• Has indistinguishable probability distribution from that of Σ over this range.

7

2018 Bassam El Khoury Seguias c©

Original Signer Σ(r)

Fixed PK matrix~xπ ~Iπm

∀j ∈ {1, .,m}, pick rand qjπ ∈
{1, ..., l} ≡ Fl

Set Ljπ ≡ (qjπ ⊗G)

Calculate HT (yjπ) = (vjπ,H2(yjπ))
(rand vjπ in F∗l ,H2(yjπ) ≡ vjπ ⊗G)

Set Rj
π ≡ (qjπ ⊗H2(yjπ))

Set cπ+1 ≡
H1(m,L1

π, R
1
π, ., L

m
π , R

m
π) (mod l)

∀i ∈ {π + 1, ..., n, 1,, π − 1}
∀j ∈ {1, ...,m}

Choose rand rji ∈ {1, ...l} ≡ Fl

Set Lji ≡ (rji ⊗G) ⊕ (ci ⊗ yji)

Calculate HT (yji) = (vji ,H2(yji))

(rand vji in F∗l ,H2(yji) ≡ vji ⊗G)
Set

Rj
i ≡ (rji ⊗H2(yji))⊕ (ci ⊗ Ijπ)

Set ci+1 ≡
H1(m,L1

i , R
1
i , ., L

m
i , R

m
i) (mod l)

(where c1 ≡ cn+1)

∀i ∈ {π + 1, .., n, 1, .., π − 1}
Set rjπ ≡ qjπ − cπxjπ (mod l)

H1

HT

output (I1
π, ., I

m
π , c1, r

1
1, ., r

m
1 , ., r

1
n, ., r

m
n)

Verifier:
1) Let c′1 ≡ c1

2) ∀i ∈ {1, ., n}, ∀j ∈ {1, .,m}:
(Lji)

′ ≡ (rji ⊗G)⊕ (c′i ⊗ y
j
i)

(Rj
i)
′ ≡ (rji ⊗H2(yji))⊕ (c′i ⊗ Ijπ)

Calculate c′i+1 ≡
H1(m, (L1

i)
′, (R1

i)
′, ., (Lmi)′, (Rm

i)′)
(mod l)

3) Check if c1 = c′n+1

Simulator S(r′) (bypasses RO H1)

Fixed PK matrixm

Choose random π ∈ {1, .., n}

∀j ∈ {1, ...,m}
Calculate HT (yjπ) = (vjπ,H2(yjπ))
(rand vjπ in F∗l ,H2(yjπ) ≡ vjπ ⊗G)

Set (Ijπ)∼ ≡ vjπ ⊗ yjπ
(this implies

(Ijπ)∼ = xjπ ⊗H2(yjπ))

∀i ∈ {1, .., n}, j ∈ {1, ...,m}
Pick rand c∼i , (r

j
i)
∼ ∈ Fl

Set (Lji)
∼ ≡

((rji)
∼ ⊗G)⊕ (c∼i ⊗ y

j
i)

∀i ∈ {1, .., n}, i 6= π, j ∈ {1, ..,m}
calculate HT (yji) = (vji ,H2(yji))

(rand vji in F∗l ,H2(yji) ≡ vji ⊗G)

∀i ∈ {1, .., n}, ∀j ∈ {1, ...,m}
Set (Rj

i)
∼ ≡

((rji)
∼ ⊗H2(yji))⊕ (c∼i ⊗ Ijπ)

Let c∼n+1 ≡ c∼1 , and ∀i ∈ {1, ., n}, Set
H1(m, (L1

i)
∼, (R1

i)
∼, ., (Lmi)∼, (Rm

i)∼)
≡ c∼i+1

(bypass RO H1)

HT

output ((I1
π)∼, ., (Imπ)∼, c∼1 ,

(r1
1)∼, ., (rm1)∼, ., (r1

n)∼, ., (rmn)∼)

Verifier:
1) Let (c∼1)′ ≡ c∼1

2) ∀i ∈ {1, ., n},∀j ∈ {1, .,m}:
((Lji)

∼)′ ≡ ((rji)
∼ ⊗G)⊕ ((c∼i)′ ⊗ yji)

((Rj
i)
∼)′ ≡ ((rji)

∼ ⊗H2(yji))
⊕((c∼i)′ ⊗ Iπj)

(c∼i+1)′ ≡
H1(m, (L1

i)
∼, (R1

i)
∼, ., (Lmi)∼, (Rm

i)∼)
(mod l)

3) Check if c∼1 = (c∼n+1)′

8

2018 Bassam El Khoury Seguias c©

The reason we introduced HT as opposed to introducing only H2 is that the
simulator makes use of the random elements vjπ, j ∈ {1, ...,m} in order to set (Ijπ)∼ to
the desired value. In other words, in the absence of knowledge about xjπ, the simulator
needs to have access to the random element vjπ ∈ F∗l that is used in the calculation of
H2(yjπ) in order to ensure that (Ijπ)∼ equates to xjπ ⊗H2(yjπ)

By construction, the output of S will satisfy the verification equation. Moreover, it
does its own random assignments to what otherwise would be calls to RO H1 (i.e., S
bypasses RO H1). Next, note the following:

1. S does not use any private key.

2. Σ and S both have a range
R ≡ (γ1, ...γm, ε1, β

1
1 , ..., β

m
1 , ...β

1
n, ..., β

m
n) ∈ ({G}∗)m × (Fl)mn+1 such that

ε1 = H1(m, (L1
n)′, (R1

n)′, ..., (Lmn)′, (Rm
n)′) (mod l) and where (Ljn)′ and (Rj

n)′ are
calculated as follows:

• Let c′1 ≡ ε1

• ∀i ∈ {1, .., n}:

{ ∀j ∈ {1, ..,m} compute:

{ (Lji)
′ = (βji ⊗G)⊕ (c′i ⊗ y

j
i)

{ (Rj
i)
′ = (βji ⊗H2(yji))⊕ (c′i ⊗ γj)

{ c′i+1 = H1(m, (L1
i)
′, (R1

i)
′, ..., (Lmi)′, (Rm

i)′)

3. Σ and S have the same probability distribution over R. Indeed,
∀(γ1, ...γm, ε1, β

1
1 , ..., β

m
1 , ...β

1
n, ..., β

m
n) ∈ R, we have:

• For Σ :

P [(I1
π, ., I

m
π , c1, r

1
1, ., r

m
1 , ., r

1
n, ., r

m
n) = (γ1, ., γm, ε1, β

1
1 , ., β

m
1 , ., β

1
n, ., β

m
n)] =

PIjπ∈{G}∗, c1∈Fl, rji∈Fl
[(Ijπ = γj, ∀j ∈ {1, ...,m}) ∩ (c1 = ε1) ∩ (rji = βji , ∀i ∈

{1, ..., n}, j ∈ {1, ...,m})]

= (1
|{G}∗|)

m × (1
l
)mn+1 = 1

(l−1)m×lmn+1

The first factor is the probability of choosing the exact Ijπ value in the set
{G}∗ that is equal to γj. The second factor is the probability of choosing the
exact mn+ 1 values given by ε1 and the βji ’s ∈ Fl.

• For S:

P [((I1
π)∼, ., (Imπ)∼, c∼1 , (r

1
1)∼, ., (rm1)∼, ., (r1

n)∼, ., (rmn)∼) =
(γ1, ., γm, ε1, β

1
1 , ., β

m
1 , ., β

1
n, ., β

m
n)] =

9

2018 Bassam El Khoury Seguias c©

P(Ijπ)∼∈{G}∗, c∼1 ∈Fl, (rji)
∼∈Fl [((I

j
π)∼ = γj, ∀j ∈ {1, ...,m}) ∩ (c∼1 =

ε1) ∩ ((rji)
∼ = βji , ∀i ∈ {1, ..., n}, j ∈ {1, ...,m})]

= (1
|{G}∗|)

m × (1
l
)mn+1 = 1

(l−1)m×lmn+1

Note that the range of (Ijπ)∼ is equal to {G}∗ by construction of S. And so
the first factor is the probability of choosing the exact (Ijπ)∼ value in the set
{G}∗ that is equal to γj. The second factor is the probability of choosing the
exact mn+ 1 values given by ε1 and the βji ’s ∈ Fl.

With S adequately built, we conclude that (as justified in section 6 of part 1):

Pω,r,′H1,HT [A(ω)H1,HT ,SHT (r′) succeeds in EFACM] = ε(k), for ε non-negligible in k.

Step 3 : We now show that the probability of faulty collisions is negligible (refer to
section 6 of part 1 for an overview). The 2 tyes of collisions are:

• ColType 1: ∃ i ∈ {1, .., n} such that a tuple (m,L1
i , R

1
i , ..., L

m
i , R

m
i) that S

encounters – recall that S makes its own random assignment to
H1(m,L1

i , R
1
i , ..., L

m
i , R

m
i) and bypasses RO H1 – also appears in the list of queries

that A(ω) sends to RO H1. A conflict in the 2 values will happen with
overwhelming probability and the execution will halt.

• ColType 2: ∃ i, j ∈ {1, .., n} such that a tuple (m,L1
i , R

1
i , ., L

m
i , R

m
i) that S

encounters – recall that S makes its own random assignment to
H1(m,L1

i , R
1
i , ., L

m
i , R

m
i) – is the same as another tuple

(m′, (L1
k)
′, (R1

k)
′, ., (Lmk)′, (Rm

k)′) that S encountered earlier – here too, S would
have made its random assignment to H1(m′, (L1

k)
′, (R1

k)
′, ., (Lmk)′, (Rm

k)′). Since
(m,L1

i , R
1
i , ., L

m
i , R

m
i) = (m′, (L1

k)
′, (R1

k)
′, ., (Lmk)′, (Rm

k)′), the assignments must
also match (i.e., H1(m,L1

i , R
1
i , ., L

m
i , R

m
i) = H1(m′, (L1

k)
′, (R1

k)
′, ., (Lmk)′, (Rm

k)′)).
However, the likelihood that the 2 are equal is negligible. Hence they will be
different with overwhelming probability and the execution will halt.

The aforementioned collisions must be avoided. In order to do so, we first calculate the
probability of their occurence. We assume that during an EFACM attack, A(ω) can
make a maximum of Q1 queries to RO H1, a maximum of QT queries to RO HT , and a
maximum of QS queries to S(r′). Q1, QT , and QS are all assumed to be polynomial in
the security parameter k, since the adversary is modeled as a PPT Turing machine.

P [ColType 1] = P [∪all (m,L1
i ,R

1
i ,.,L

m
i ,R

m
i), (i=1,.,n){(m,L1

i , R
1
i , ., L

m
i , R

m
i) appeared in

at least one of the QS queries to S and Q1 queries to RO H1}]

≤
∑n

i=1 P [∪all L1
i
{L1

i was part of at least one of the QS queries to S and Q1 queries
to RO H1}]

≤
∑n

i=1

∑
all L1

i∈{G}
P [∪(j=1,..,QS), (k=1,..,Q1){L1

i was part of at least the j
th query to S

10

2018 Bassam El Khoury Seguias c©

and kth queries to RO H1}]

≤
∑n

i=1

∑
all L1

i∈{G}
∑QS

j=1

∑Q1

k=1 P [L1
i was part of at least the j

th query to S and kth

queries to RO H1]

≤
∑n

i=1

∑
all L1

i∈{G}
∑QS

j=1

∑Q1

k=1
1

|{G}|2 = n× |{G}| × QSQ1

|{G}|2 = n× QSQ1

|{G}| <
nQSQ1

2k
.

(since k < log2(|{G}∗|) < log2(|{G}|) by design).

Recalling that QS and Q1 are polynomial in k, we conclude that P [ColType 1] is
negligible in k.

Next, we compute P [ColType 2] =

P [∪all (m,L1
i ,R

1
i ,.,L

m
i ,R

m
i), (i=1,..,n){(m,L1

i , R
1
i , ., L

m
i , R

m
i) appeared at least twice during queries to S}]

≤
∑n

i=1 P [∪all L1
i∈{G}{L

1
i was part of at least 2 queries to S}]

≤
∑n

i=1

∑
L1
i∈{G}

(
QS
2

)
× 1
|{G}|2 ≤ n× |{G}| ×

(
QS
2

)
× 1
|{G}|2 < n×

(
QS
2

)
× 1
|{G}| <

nQ2
S

2×2k
.

(since k < log2(|{G}∗|) < log2(|{G}|) by design).

Recalling that QS is polynomial in k, we conclude that P [ColType 2] is negligible in k.

Putting it altogether, we find that the below quantity is negligible in k:

P [Col] = P [ColType 1 ∪ ColType 2] ≤
∑2

i=1 P [ColType i] ≤ n(
QSQ1+

Q2
S
2

2k
) ≡ δ(k)

This allows us to conclude that the below quantity is non-negligible in k (refer to
section 6 of part 1 for a justification):

Pω,r,′H1,HT [A(ω)H1,HT ,SHT (r′)succeeds in EFACM ∩ Col] ≥ ε(k)− δ(k).

Step 4 : In this step, our objective is to show that if (ω∗, r′∗,H∗1,H∗T) is a successful
tuple that generated a first EFACM forgery, then the following quantity is
non-negligible in k:

PH1 [A(ω∗)H1,H∗T ,S
HT (r′∗) succeeds in EFACM ∩ (ρα(µ~β) 6= ρ∗α(µ~β)) |

(ω∗, r′∗,H∗1,H∗T) is a succesfull first forgery, and (ρi = ρ∗i) for i ∈ {1, ...α(µ~β)− 1}]

Here α(µ~β) is an appropriate index that we will define in the proof. To further simplify
the notation, we let ρ∗i ≡ H∗1(q∗i) and ρi ≡ H1(qi) for all i ∈ 1, .., α(µ~β). (qi and q∗i
denote respectively the ith query to H1 and to H∗1).

11

2018 Bassam El Khoury Seguias c©

Let’s take a closer look at Pω,r,′H1,HT [A(ω)H1,HT ,SHT (r′)succeeds in EFACM ∩ Col].

Any successful forgery (I1, ..., Im, c1, r
1
1, ..r

m
1 , ...r

1
n, ..., r

m
n) must satisfy the verification

equation c1 = H1(m, (L1
n)′, (R1

n)′, ..., (Lmn)′, (Rm
n)′) (mod l) where we let c′1 ≡ c1, and

∀i ∈ {1, .., n}:

{ ∀j ∈ {1, ...,m}, compute:

{ (Lji)
′ ≡ (rji ⊗G) ⊕ (ci ⊗ yji)

{ (Rj
i)
′ ≡ (rji ⊗H2(yji)) ⊕ (ci ⊗ Ij)

{ c′i+1 ≡ H1(m, (L1
i)
′, (R1

i)
′, ..., (Lmi)′, (Rm

i)′) (mod l)

We distinguish between 3 scenarios (without loss of generality, we assume that all
A-queries sent to RO H1 are distinct from each-other. Similarly, all A-queries sent to
RO HT are distinct from each-other. This is because we can assume that A keeps a
local copy of previous query results and avoid redundant calls):

• Scenario 1: A was successful in its forgery, and

– No collisions occured, and

– ∃i ∈ {1, .., n} such that it never queried RO H1 on input
(m, (L1

i)
′, (R1

i)
′, ..., (Lmi)′, (Rm

i)′).

• Scenario 2: A was successful in its forgery, and

– No collisions occured, and

– ∀i ∈ {1, .., n} it queried RO H1 on input (m, (L1
i)
′, (R1

i)
′, ..., (Lmi)′, (Rm

i)′)
during execution, and

– ∃i ∈ {1, .., n}, j ∈ {1, ..,m} such that it queried RO HT on input yji after it
had queried RO H1 on input (m, (L1

i)
′, (R1

i)
′, ..., (Lmi)′, (Rm

i)′).

• Scenario 3: A was successful in its forgery, and

– No collisions occured, and

– ∀i ∈ {1, .., n} it queried RO H1 on input (m, (L1
i)
′, (R1

i)
′, ..., (Lmi)′, (Rm

i)′)
during execution, and

– ∀i ∈ {1, .., n}, j ∈ {1, ..,m}, it queried RO HT on input yji before it queried
RO H1 on input (m, (L1

i)
′, (R1

i)
′, ..., (Lmi)′, (Rm

i)′).

The probability of scenario 1 is upper-bounded by the probability that A picks c′i+1

such that it matches the value of H1(m, (L1
i)
′, (R1

i)
′, ..., (Lmi)′, (Rm

i)′). If the 2 values
don’t match, then c1 will be different than c′n+1 (by the verification algorithm V). It is
upper-bounded because at the very least, this constraint must be observed to pass the
verification test. H1(m, (L1

i)
′, (R1

i)
′, ..., (Lmi)′, (Rm

i)′) is the value that RO H1 returns to
V (the verification algorithm) when verifying the validity of the forged signature. And
since c′i+1 can be any value in the range of H1 (which was defined to be Fq) we get:

P [Scenario 1] ≤ 1
q
< 1

l
= 1
|{G}| <

1
|{G}∗| ≤

1
2k

, which is negligible in k.

12

2018 Bassam El Khoury Seguias c©

In scenario 2, let i ∈ {1, .., n} and j ∈ {1, ..,m} be 2 indices such that A queried RO HT

on input yji after it had queried RO H1 on input (m, (L1
i)
′, (R1

i)
′, ..., (Lmi)′, (Rm

i)′). Note
that during the verification process, V will calculate (Rj

i)
′ ≡ (rji ⊗H2(yji))⊕ (c′i ⊗ Ij)

and hence will make a call to HT on input yji (remember that H2 is derived from HT).
The probability that the resulting (Rj

i)
′ matches the (Rj

i)
′ argument previously fed to

H1 is upper-bounded by 1
|{G}∗| (since the range of H2 = |{G}∗|). Moreover, i can be any

index in {1, .., n} and j any index in {1, ..,m}. We get:

P [Scenario 2] ≤ mn
|{G}∗| ≤

mn
2k

, which is negligible in k.

So we assume that a successful forgery will likely be of the Scenario 3 type.

P [Scenario 3] =
Pω,r,′H1,HT [A(ω)H1,HT ,SHT (r′)succeeds in EFACM ∩ Col]− P [Scenario 1]

−P [Scenario 2]

≥ ε(k)− δ(k)− 1
2k
− mn

2k
≡ ν(k), which is non-negligible in k

The rest of the proof for Step 4 is exactly the same as the one outlined for the LSAG
scheme. We will not reproduce it here (the reader can refer to the details in section 4 of
part 5).

Step 5 : The final step uses the 2 forgeries obtained earlier to solve an instance of the
Discrete Logarithm (DL) problem. Here is a recap of Step 4 results:

• With non-negligible probability of at least ν(k)
4

we get a successful tuple

(ω∗, r′∗,H∗1,H∗T), s.t. (ω∗, r′∗,H∗1,H∗T) ∈ (Ω~β ∩ S~β) for some vector of indices ~β ∈ I
(note that in this context, I refers to a specific set of indices and not to the

key-image vector. Review section 4 of part 5 for a definition of I and ~β). By
running A a number of times polynomial in k, we can find such a tuple.

• Once we find such a tuple, we’ve also shown that with non-negligible probability
of at least ν(k)

4V(Q1+QT),n
− 1

2k
, we can find another successful tuple (ω∗, r′∗,H∼1 ,H∗T)

s.t. (ω∗, r′∗,H∼1 ,H∗T) ∈ S~β and (ρ∼1 = ρ∗1), .., (ρ∼α(µ~β)−1 = ρ∗α(µ~β)−1), (ρ∼α(µ~β) 6= ρ∗α(µ~β)).

Let (ω∗, r′∗,H∗1,H∗T) correspond to forgery

σa(ma, PK) ≡ ((I1)a, ..., (I
m)a, (c1)a, (r

1
1)a, .., (r

m
1)a, ..., (r

1
n)a, .., (r

m
n)a)

and (ω∗, r′∗,H∼,H∗T) correspond to forgery

σb(mb, PK) ≡ ((I1)b, ..., (I
m)b, (c1)b, (r

1
1)b, .., (r

m
1)b, ..., (r

1
n)b, .., (r

m
n)b).

Recall that α(µ~β) is the index of the last (m, (L1
i)
′, (R1

i)
′, ., (Lmi)′, (Rm

i)′), i ∈ {1, ., n}
query that A sends to RO H1 (µ~β = maxni=1(~β)i). Since the 2 experiments
corresponding to the 2 successful tuples have:

13

2018 Bassam El Khoury Seguias c©

• The same random tapes ω∗ and r′∗

• The same RO H∗T

• ROs H∗1 and H∼1 behave the same way on the first α(µ~β)− 1 queries,

we can be confident that the first α(µ~β) queries sent to the 2 ROs H∗1 and H∼1 are
identical. In other words, we have ∀i ∈ {1, ..., n}

(ma, (L
1
i)
′
a, (R

1
i)
′
a, ..., (L

m
i)′a, (R

m
i)′a) = (mb, (L

1
i)
′
b, (R

1
i)
′
b, ..., (L

m
i)′b, (R

m
i)′b)

Without loss of generality, let (m, (L1
ζ)
′, (R1

ζ)
′, ..., (Lmζ)′, (Rm

ζ)′), (where ζ ∈ {1, ..., n}),
correspond to the last query of this type sent to RO H1. That means that
(m, (L1

ζ)
′, (R1

ζ)
′, ..., (Lmζ)′, (Rm

ζ)′) is the µth~β query sent to RO H1. We have:

(ma, (L
1
ζ+1)′a, (R

1
ζ+1)′a, ..., (L

m
ζ+1)′a, (R

m
ζ+1)′a) = (mb, (L

1
ζ+1)′b, (R

1
ζ+1)′b, ..., (L

m
ζ+1)′b, (R

m
ζ+1)′b)

(where (ζ + 1) ≡ 1 whenever ζ = n)

=⇒ ∀j ∈ {1, ...,m}, (Ljζ+1)′a = (Ljζ+1)′b

=⇒ ((rjζ+1)a ⊗G)⊕ ((c′ζ+1)a ⊗ yjζ+1) = ((rjζ+1)b ⊗G)⊕ ((c′ζ+1)b ⊗ yjζ+1),

=⇒ xjζ+1[(c′ζ+1)a − (c′ζ+1)b] = (rjζ+1)b − (rjζ+1)a (mod l) (by writing yjζ+1 = xjζ+1 ⊗G)

Moreover, we have

(c′ζ+1)a = H∗1(ma, (L
1
ζ)
′
a, (R

1
ζ)
′
a, ..., (L

m
ζ)′a, (R

m
ζ)′a) (mod l) (by definition of c′ in V)

= ρ∗α(µ~β) 6= ρ∼α(µ~β) (by design of the forgery tuples)

= H∼1 (mb, (L
1
ζ)
′
b, (R

1
ζ)
′
b, ..., (L

m
ζ)′b, (R

m
ζ)′b) (mod l) = (c′ζ+1)b (by definition of c′ in V)

That means that ∀j ∈ {1, ...,m}, we can solve for xjζ+1 =
(rjζ+1)b−(rjζ+1)a

(c′ζ+1)a−(c′ζ+1)b
(mod l) in

polynomial time, contradicting the intractability of DL on elliptic curve groups. We
conclude that MLSAG is secure against EFACM in the RO model.

5 Security analysis - Exculpability

This section is concerned with the notion of exculpability from an unforgeability
standpoint as described in [2]. A detailed discussion can be found in part 5 of this
series. The setting is similar to the one previously described in parts 5 and 6, with a
small nuance. Suppose all m private keys of each member of an (n− 1) subset of ring
members have been compromised in an n-ring setting. Let π denote the index of the
only non-compromised user with key-vector ~xπ ≡ [x1

π ... x
m
π]T , and let ~Iπ ≡ [I1

π ... I
m
π]T

denote the key-image vector associated with it. We investigate whether it is likely to
produce a valid forgery with key-image vector that includes at least one component

14

2018 Bassam El Khoury Seguias c©

equal to Ijπ for some j ∈ {1, ...,m} . In what follows, we show that this can only happen
with negligible probability. In essence, this means that a non-compromised honest ring
member (by honest we mean a ring member that signs at most once using his private
key-vector) does not run the risk of encountering a forged signature that carries any
component of his key-image vector. In the context of Monero, this implies that a
non-compromised honest ring member cannot be accused of signing twice using the
same key-image vector, and hence is exculpable.

Note that since the adversary A(ω) has access to all the compromised private keys of
(n− 1) members, it can easily calculate their corresponding public key vectors. Doing
so will allow it to identify the public key vector ~yπ ≡ [y1

π ... y
m
π]T of the

non-compromised ring member and hence determine the index π. In order to prove the
exculpability of the MLSAG scheme, we follow an almost identical proof to that of the
previous section (i.e., unforgeability vis-a-vis EFACM) and apply the same 5-step
approach. The objective is to show that this particular type of forgery would imply the
ability to solve the DL of at least one component of [y1

π ... y
m
π]T . The nuance resides in

the specific index π for which the DL will be solved, as opposed to any other index.
This is because we assume that all the other members are compromised and hence their
DLs (i.e., private keys) are common-knowledge.

Step 1 : We proceed by contradiction and assume that there exists a PPT adversary
A such that:

Pω,r,H1,HT [A(ω)H1,HT ,{ ~x1,.., ~̂xπ ,.., ~xn},ΣH1,HT (r) succeeds in creating a forgery σ(m,PK)] =
ε(k), for ε non-negligible in k.

We refer to ”succeeds in creating a forgery σ(m,PK)” as ”succeeds in EFACMExπ”.
We re-write the above equation as:

Pω,r,H1,HT [A(ω)H1,HT ,{ ~x1,.., ~̂xπ ,.., ~xn},ΣH1,HT (r) succeeds in EFACMExπ] = ε(k), for ε
non-negligible in k.

The notation used makes it explicit that A(ω) can access the set of compromised key

vectors { ~x1, .., ~̂xπ, .., ~xn} with ~xπ excluded. Success is defined as issuing a forged
signature with a key image vector that shares at least one component with the key
image vector of the non-compromised user π. We let this component be
Iδπ ≡ xδπ ⊗H2(yδπ) for some δ ∈ {1, ...,m}. (Recall that H2 is derived from HT).

Step 2 : The next step consists in building a simulator S(r′) such that it:

• Does not have access to any component of the private key vector of any signer.

• Has the same range as the original signing algorithm Σ (i.e., they output
signatures taken from the same pool of potential signatures over all possible
choices of RO functions and respective random tapes r′ and r).

• Has indistinguishable probability distribution from that of Σ over this range.

15

2018 Bassam El Khoury Seguias c©

The simulator S(r′) is the same as the one we built in the previous section. The only
difference is that S(r′) does not choose a random index π, since A(ω) already knows the
index of the non-compromised ring member.

Step 3 : The logical reasoning and procedure are identical to those of the previous
section. We conclude that

Pω,r,′H1,HT [A(ω)H1,HT ,{ ~x1,.., ~̂xπ ,.., ~xn},SHT (r′)succeeds in EFACMExπ ∩ Col] ≥ ε(k)− δ(k).

Step 4 : Here too, the logical reasoning and procedure are identical to those of the
previous section. In particular, we define the following sets in a similar way:

• S=

{(ω,r′,H1,HT)| A(ω)H1,HT ,{ ~x1,.., ~̂xπ,.., ~xn}, S
HT (r′)succeeds in EFACMExxπ

∩ Col∩E∩ maxni=1[Ind(ω,r′,H1,HT)] 6=∞}

• S~l=

{(ω,r′,H1,HT)| A(ω)H1,HT ,{ ~x1,.., ~̂xπ,.., ~xn}, S
HT (r′)succeeds in EFACMExxπ

∩ Col∩E∩ Ind(ω,r′,H1,HT)=~l}

and conclude that:

PH1
[((ω∗,r′∗,H1,H∗T) ∈ S~β) ∩ (ρα(µ~β) 6=ρ∗α(µ~β)

) | (ω∗,r′∗,H∗1,H∗T) ∈S~β , ρ1=ρ∗1 ..., ρα(µ~β)−1=ρ∗
α(µ~β

)−1
)]

≥ ν(k)
4V(Q1+QT),n

− 1
2k

, which is non-negligible in k.

Here α(µ~β), as before, is an appropriately defined index, ρ∗i ≡ H∗1(qi), ρi ≡ H1(qi) for all

i ∈ 1, .., α(µ~β), and qi denotes the ith query sent to RO.

Step 5 : The final step uses the 2 forgeries obtained earlier to solve an instance of the
Discrete Logarithm (DL) problem. Here is a recap of Step 4 results:

• With non-negligible probability of at least ν(k)
4

we get a successful tuple

(ω∗, r′∗,H∗1,H∗T), s.t. (ω∗, r′∗,H∗1,H∗T) ∈ (Ω~β ∩ S~β) for some vector of indices ~β ∈ I
(note that in this context, I refers to a specific set of indices and not to the

key-image vector. Review section 4 of part 5 for a definition of I and ~β). By
running A a number of times polynomial in k, we can find such a tuple.

• Once we find such a tuple, we’ve also shown that with non-negligible probability
of at least ν(k)

4V(Q1+QT),n
− 1

2k
, we can find another successful tuple (ω∗, r′∗,H∼1 ,H∗T)

s.t. (ω∗, r′∗,H∼1 ,H∗T) ∈ S~β and (ρ∼1 = ρ∗1), .., (ρ∼α(µ~β)−1 = ρ∗α(µ~β)−1), (ρ∼α(µ~β) 6= ρ∗α(µ~β)).

Let (ω∗, r′∗,H∗1,H∗T) correspond to forgery

σa(ma, PK) ≡ ((I1)a, ..., (I
δ
π), ..., (Im)a, (c1)a, (r

1
1)a, .., (r

m
1)a, ..., (r

1
n)a, .., (r

m
n)a)

and (ω∗, r′∗,H∼,H∗T) correspond to forgery

16

2018 Bassam El Khoury Seguias c©

σb(mb, PK) ≡ ((I1)b, ..., (I
δ
π), ..., (Im)b, (c1)b, (r

1
1)b, .., (r

m
1)b, ..., (r

1
n)b, .., (r

m
n)b).

Recall that (Iδπ) is the component of π’s key image vector that appears in the forgery.
α(µ~β) is the index of the last (m, (L1

i)
′, (R1

i)
′, ., (Lmi)′, (Rm

i)′), i ∈ {1, ., n} query that A
sends to RO H1 (µ~β = maxni=1(~β)i). Since the 2 experiments corresponding to the 2
successful tuples have:

• The same random tapes ω∗ and r′∗

• The same RO H∗T

• ROs H∗1 and H∼1 behave the same way on the first α(µ~β)− 1 queries,

we can be confident that the first α(µ~β) queries sent to the 2 ROs H∗1 and H∼1 are
identical. In other words, we have ∀i ∈ {1, ..., n}

(ma, (L
1
i)
′
a, (R

1
i)
′
a, ..., (L

m
i)′a, (R

m
i)′a) = (mb, (L

1
i)
′
b, (R

1
i)
′
b, ..., (L

m
i)′b, (R

m
i)′b).

=⇒ ∀i ∈ {1, .., n}, ∀j ∈ {1, ...,m}, (Lji)
′
a = (Lji)

′
b, and (Rj

i)
′
a = (Rj

i)
′
b

In particular, for the index δ ∈ {1, ...,m} that corresponds to the component Iδπ that
appears in the forgery, we let (Rδ

i)
′ ≡ (Rδ

i)
′
a = (Rδ

i)
′
b, and (Lδi)

′ ≡ (Lδi)
′
a = (Lδi)

′
b. For

each i ∈ {1, .., n}, we get 2 identical systems of 2 equations dictated by V ’s verification
computation:

First system of 2 linear equations

{ (Rδ
i)
′ = ((rδi)a⊗H2(yδi))⊕ ((c′i)a⊗ Iδπ)

{ (Lδi)
′ = ((rδi)a ⊗G)⊕ ((c′i)a ⊗ yδi)

where (c′1)a ≡ (c1)a, and (c′i+1)a =
H1(ma, (L

1
i)
′
a, (R

1
i)
′
a, ., (L

m
i)′a, (R

m
i)′a)

∀i ∈ {1, ..., n}

Second system of 2 linear equations

{ (Rδ
i)
′ = ((rδi)b⊗H2(yδi))⊕ ((c′i)b⊗ Iδπ)

{ (Lδi)
′ = ((rδi)b ⊗G)⊕ ((c′i)b ⊗ yδi)

where (c′1)b ≡ (c1)b, and (c′i+1)b =
H1(mb, (L

1
i)
′
b, (R

1
i)
′
b, ., (L

m
i)′b, (R

m
i)′b)

∀i ∈ {1, ..., n}

∀i ∈ {1, .., n}, the first system is a linear system of 2 equations in variables (rδi)a and
(c′i)a. Similarly, the second system is a linear system of 2 equations in variables (rδi)b
and (c′i)b. The 2 systems are identical with different variable names. Hence, if
((rδi)

∗
a, (c

′
i)
∗
a) is a unique solution to the first system and ((rδi)

∗
b , (c

′
i)
∗
b) a unique solution

to the second, we can be confident that ((rδi)
∗
a = (rδi)

∗
b and (c′i)

∗
a = (c′i)

∗
b . (Note that for

any index j ∈ {1, ...,m} other than δ, the 2 forged signatures do not necessarily share
the same image-key component. In other terms (Ij)a is not necessarily equal (Ij)b and
so the 2 systems of linear equations would be different from each other). For either
system to admit a unique solution, the 2 equations must be linearly independent. We
re-write the 2 systems as follows:

First system of 2 linear equations

{ (Rδ
i)
′ = ((rδi)a⊗H2(yδi))⊕ ((c′i)a⊗ Iδπ)

{ logG(Liδ)
′ = (rδi)a + (c′i)a x

δ
i

where (c′1)a ≡ (c1)a, and (c′i+1)a =
H1(ma, (L

1
i)
′
a, (R

1
i)
′
a, ., (L

m
i)′a, (R

m
i)′a)

17

2018 Bassam El Khoury Seguias c©

∀i ∈ {1, ..., n} Second system of 2 linear equations

{ (Rδ
i)
′ = ((rδi)b⊗H2(yδi))⊕ ((c′i)b⊗ Iδπ)

{ logG(Liδ)
′ = (rδi)b + (c′i)b x

δ
i

where (c′1)b ≡ (c1)b, and (c′i+1)b =
H1(mb, (L

1
i)
′
b, (R

1
i)
′
b, ., (L

m
i)′b, (R

m
i)′b)

∀i ∈ {1, ..., n}

If we multiply the second equation by H2(yδi) (multiplication refers to ⊗), we see that a
sufficient condition for the system to be linearly independent is to have
[xδi ⊗H2(yδi)] 6= Iδπ ≡ [xδπ ⊗H2(yδπ)]. Next, we show that with overwhelming
probability, the system of linear equations is indeed independent ∀i ∈ {1, .., n}, i 6= π:

• Recall that the range of H2 is {G}∗ and that the order of {G}∗ = (l − 1).

• Therefore, ∃ vδi , vδπ ∈ F∗l such that H2(yδi) = vδi ⊗G and H2(yδπ) = vδπ ⊗G.

• We can then re-write the sufficient condition as xδiv
δ
i 6= xδπv

δ
π (mod l).

• Note that given xδi , x
δ
π, and vδπ, there is at most one value of vδi ∈ F∗l that satisfies

xδiv
δ
i = xδπv

δ
π (mod l). Otherwise, we would have vδi , (v

δ
i)
′ ∈ F∗l , vδi 6= (vδi)

′ (mod l),
and xδiv

δ
i = xδπv

δ
π = xδi (v

δ
i)
′ (mod l). This would imply that vδi ≡ (vδi)

′ (mod l), a
contradiction.

• Noting that each vδi corresponds to a distinct H2(yδi), we conclude that given xδi , x
δ
π

and H2(yδπ) there is at most one H2(yδi) s.t. [xδi ⊗H2(yδi)] = Iδπ ≡ [xδπ ⊗H2(yδπ)].

• Since H2 is a RO outputing random values, the probability of getting the right
value of H2(yδi) is ≤ 1

|{G}∗| <
1
|{G}| <

1
2k

(negligible in k).

∀i ∈ {1, .., n}, i 6= π, we therefore conclude that with overwhelming probability we have
[xδi ⊗H2(yδi)] 6= Iδπ. We can then be confident that the linear system of 2 equations has
a unique solution. Hence, ∀i ∈ {1, .., n}, i 6= π, we have (rδi)a = (rδi)b, and (c′i)a = (c′i)b.

Moreover, by design of the 2 forgeries, we know that there exists one and only one
ζ ∈ {1, ..., n} (corresponding to the µth~β query sent to RO H1) that satisfies

(c′ζ+1)a = H∗1(ma, (L
1
ζ)
′
a, (R

1
ζ)
′
a, ..., (L

m
ζ)′a, (R

m
ζ)′a) (mod l) (by definition of c′ in V)

= ρ∗α(µ~β) 6= ρ∼α(µ~β) (by design of the forgery tuples)

= H∼1 (mb, (L
1
ζ)
′
b, (R

1
ζ)
′
b, ..., (L

m
ζ)′b, (R

m
ζ)′b) (mod l) = (c′ζ+1)b (by definition of c′ in V)

But ∀i ∈ {1, .., n}, i 6= π, we showed that with overwhelming probability (c′i)a = (c′i)b.
Therefore, it must be that (ζ + 1) = π and so (c′π)a 6= (c′π)b.

Going back to the system of 2 equations associated with i = π, we write:

(rδπ)a + (c′π)a x
δ
π = logG(Lδπ)′ = (rδπ)b + (c′π)b x

δ
π

18

2018 Bassam El Khoury Seguias c©

That means that we can solve for xδπ = (rδπ)b−(rδπ)a
(c′π)a−(c′π)b

(mod l) in polynomial time,
contradicting the intractability of DL on elliptic curve groups. We conclude that the
MLSAG scheme is exculpable and secure against EFACMExπ in the RO model.

6 Security analysis - Anonymity

In this section, we show that the MLSAG scheme satisfies the weaker anonymity
definition #2 introduced in part 3 of this series. Note that as we previously observed in
part 5, linkable signatures cannot satisfy anonymity definition #1.

More formally, let A(ω) be a PPT adversary with random tape ω that takes 4 inputs:

• Any message m.

• A public key matrix PK ≡ [~y1 ... ~yn] that includes ~yπ ≡ [y1
π ... y

m
π]T of the signer.

• A list Dt ≡ { ~̂x1, ..., ~̂xt} of compromised private key vectors (0 ≤ t ≤ n). Dt can be

empty and ~̂xi may be different than ~xi for i ∈ {1, ..., n}. But Dt ⊆ { ~x1, ..., ~xn}

• A valid signature σπ(m,PK) on message m, public key matrix PK and actual
signer private key vector ~xπ ≡ [x1

π ... x
m
π]T .

A(ω) outputs an index in {1, ..., n} that it thinks is that of the actual signer. Definition
2 mandates that for any polynomial Q(k) in security parameter k, we have:

1
n−t −

1
Q(k)
≤ P [A(ω)(m,PK,Dt, σπ(m,PK)) = π | σπ(m,PK) is valid] ≤ 1

n−t + 1
Q(k)

if ~xπ /∈ Dt and 0 ≤ t < n− 1.

P [A(ω)(m,PK,Dt, σπ(m,PK)) = π | σπ(m,PK) is valid] > 1− 1
Q(k)

if ~xπ ∈ Dt or t = n− 1.

In the RO model, A(ω) can send a number of queries (polynomial in k) to RO H1 and
RO HT . The probability of A’s success is computed over the distributions of ω,H1 and
HT . Making explicit the dependence on the ROs, definition # 2’s condition becomes:

1
n−t −

1
Q(k)
≤ Pω,H1,HT [AH1,HT (ω)(m,PK,Dt, σπ(m,PK)) = π | σπ(m,PK) is valid] ≤

1
n−t + 1

Q(k)
, if ~xπ /∈ Dt and 0 ≤ t < n− 1.

Pω,H1,HT [AH1,HT (ω)(m,L,Dt, σπ(m,PK)) = π | σπ(m,PK) is valid] > 1− 1
Q(k)

if ~xπ ∈ Dt or t = n− 1.

In order to prove that anonymity holds in the above sense, we proceed by contradiction
and rely on the intractability of the Decisional Diffie Hellman problem or DDH for
short (refer to part 5 for a discussion of DDH). We consider 3 separate cases:

• Case 1: ~xπ /∈ Dt and 0 ≤ t < n− 1.

Suppose that ∃ A(ω) in PPT(k) and ε(k) non-negligible in k such that

19

2018 Bassam El Khoury Seguias c©

Pω,H1,HT [AH1,HT (ω)(m,PK,Dt, σπ(m,PK)) = π | σπ(m,PK) is valid] > 1
n−t+ε(k)

if ~xπ /∈ Dt and 0 ≤ t < n− 1

Recall that since ~xπ /∈ Dt, one can automatically rule out all the compromised
ring members as possible signers (the logic is similar to what was described in the
anonymity section of part 5). One can then limit the guessing range of the
identity of the signer to the uncompromised batch of (n− t) remaining members.

We now build M ∈ PPT(k) that colludes with A(ω) to solve the DDH problem.
M ’s input consists of 1) The tuple (α, β, γ) being tested for DDH, 2) A certain
ring size n (randomly chosen), 3) A number 0 ≤ t < n− 1 of compromised
members (randomly chosen), and 4) A message m (randomly chosen).

M outputs a tuple consisting of 1) The message m, 2) A randomly generated
public key matrix PK ∈ ({G}∗)(m×n), 3) A randomly chosen set Dt of t
compromised secret key vectors, and 4) A not-necessarily valid signature
σπ(m,PK) assigned to ring member π s.t. ~xπ /∈ Dt. We let M do the following:

(α, β, γ)n t m

Randomly choose π in {1, .., n} (index of M ’s signer).

Let x1
π ≡ αβ, and y1

π = x1
π ⊗G ≡ αβ ⊗G

∀j ∈ {2, ...,m} choose random xjπ ∈ F∗l ≡ {1, ..., l − 1}
Calculate yjπ = xjπ ⊗G

∀i ∈ {1, ..., n}, i 6= π,∀j ∈ {1, ...,m}
Choose random xji ∈ F∗l and calculate yji = xji ⊗G
Let PK be the public matrix PK ≡ [~y1... ~yπ... ~yn]

(where ~yi ≡ [y1
i ... y

m
i]T)

∀i ∈ {1, ..., n}, ∀j ∈ {1, ...,m}
Get HT (yji) = (vji , v

j
i ⊗G) ≡ (vji ,H2(yji)).

(Recall that vji ’s are random in F∗l).

∀i ∈ {1, ..., n}, ∀j ∈ {1, ...,m}
Randomly choose ci, r

j
i ∈ Fl, let cn+1 ≡ c1

Calculate Lji = (rji ⊗G)⊕ (ci ⊗ yji)
Calculate Rj

i = (rji ⊗H2(yji))⊕ (cix
j
i ⊗H2(yjπ))

Set H1(m,L1
i , R

1
i , ..., L

m
i , R

m
i) ≡ ci+1 (Bypass H1)

Generate Dt by randomly chosing t ~xi’s s.t. ~xπ /∈ Dt.

Let I1
π ≡ γ ⊗H2(y1

π), and ∀j ∈ {2, ...,m}, Ijπ ≡ xjπ ⊗H2(yjπ)
Set σπ(m,PK) ≡ (I1

π, ..., I
m
π , c1, r

1
1, ..., r

m
1 , ..., r

1
n, ..., r

m
n)

HT

output (m,PK,Dt, σπ(m,PK))

20

2018 Bassam El Khoury Seguias c©

M feeds its output (m,PK,Dt, σπ(m,PK)) to A(ω). In order for A(ω) to use its
advantage in guessing the signer’s identity, it must be given a valid signature (i.e.,
a signature that is an element of the range of acceptable signatures over all RO
H1. For σπ(m,PK) to be a valid signature, (G,α⊗G, β ⊗G, γ ⊗G) must be a
DDH instance. Indeed, let H1 be partially defined as per the design of M . We
show that for such an H1, the signature obtained is an element of the range of
acceptable signatures. First note the following (all the primed quantities below
are as defined in the verification algorithm V):

If (γ = αβ) ∩ (c′i = ci) ∩ ((Lji)
′ = Lji) ∩ ((Rj

i)
′ = Rj

i), ∀j ∈ {1, .,m} then:

{ c′i+1 = H1(m, (L1
i)
′, (R1

i)
′, ., (Lmi)′, (Rm

i)′) (mod l) = H1(m,L1
i , R

1
i , ., L

m
i , R

m
i)

(mod l) = ci+1

{ ∀j ∈ {1, .,m}, (Lji+1)′ ≡ (rji+1 ⊗G)⊕ (c′i+1 ⊗ y
j
i+1) =

(rji+1 ⊗G)⊕ (ci+1 ⊗ yji+1) = Lji+1

{ ∀j ∈ {1, .,m}, (Rj
i+1)′ ≡ (rji+1 ⊗H2(yji+1))⊕ (c′i+1 ⊗ Ijπ) =

{ (r1
i+1 ⊗H2(y1

i+1))⊕ (ci+1αβ ⊗H2(y1
π)) = R1

i+1, if j = 1

{ (rji+1 ⊗H2(yji+1))⊕ (ci+1x
j
i ⊗H2(yjπ)) = Rj

i+1, if j 6= 1

Since (G,α⊗G, β ⊗G, γ ⊗G) is a DDH instance then we necessarily have γ = αβ

Moreover, recall that c′1 = c1 (by design of V). And so ∀j ∈ {1, ...,m}, (Lj1)′ = Lj1
and (Rj

1)′ = Rj
1. We therefore conclude by induction on c′i that ∀i ∈ {1, ..., n+ 1},

c′i = ci. In particular, c′n+1 = cn+1 ≡ c1. This in turn implies that σπ(m,PK) is a
valid signature.

On the other hand, if (G,α⊗G, β ⊗G, γ ⊗G) is not a DDH instance, then
∀j ∈ {1, ...,m}, Rj

i 6= (Rj
i)
′ and with overwhelming probability σπ(m,PK) is not

a valid signature.

Recall that A(ω) can send queries to H1 and HT during execution. It is important
to enforce consistency between M and A(ω)’s query results obtained from RO H1

and RO HT on the same input. There are no risks of faulty collisions in so far as
HT is concerned (by design of M). However, M bypasses RO H1 and conducts its
own backpatching to H1(m,L1

i , R
1
i , ., L

m
i , R

m
i), ∀i ∈ {1, ..., n}. If ∃i ∈ {1, ..., n}

such that A(ω) queries H1 on input (m,L1
i , R

1
i , ., L

m
i , R

m
i), then with

overwhelming probability, it will conflict with M ’s backpatched value causing the
execution to halt. The aforementioned collision must be avoided. In order to do
so, we first calculate the probability of its occurence. We assume that during
execution, A(ω) can make a maximum of Q1 queries to RO H1. Q1 is assumed to
be polynomial in the security parameter k, since the adversary is modeled as a
PPT Turing machine.

21

2018 Bassam El Khoury Seguias c©

P [Col] = P [∪all (m,L1
i ,R

1
i ,.,L

m
i ,R

m
i), i∈{1,...,n}{(m,L1

i , R
1
i , ., L

m
i , R

m
i) appeared in M

and in at least one of the Q1 queries to RO H1}]

≤
∑n

i=1 P [∪all Li{Li appeared in M and was part of at least one of
the Q1 queries to RO H1}]

≤
∑n

i=1

∑
all Li∈{G} P [∪(j=1,..,Q1){Li appeared in M and was part of at least the

jth query to RO H1}]

≤
∑n

i=1

∑
all Li∈{G}

∑Q1

j=1 P [Li appeared in M and was part of at least the

jth query to RO H1]

≤
∑n

i=1

∑
all Li∈{G}

∑Q1

j=1
1

|{G}|2 = n|{G}| × Q1

|{G}|2 = nQ1

|{G}| <
nQ1

2k
.

(since k < log2(|{G}∗|) < log2(|{G}|) by design).

and so we conclude that:

Pω,H1,HT [(AH1,HT (ω)(m,PK,Dt, σπ(m,PK)) = π) ∩ Col | σπ(m,PK) is valid] =

Pω,H1,HT [AH1,HT (ω)(m,PK,Dt, σπ(m,PK)) = π | σπ(m,PK) is valid] −
Pω,H1,HT [(AH1,HT (ω)(m,PK,Dt, σπ(m,PK)) = π) ∩ Col | σπ(m,PK) is valid]

> Pω,H1,HT [AH1,HT (ω)(m,PK,Dt, σπ(m,PK)) = π | σπ(m,PK) is valid] − P [Col]

> Pω,H1,HT [AH1,HT (ω)(m,PK,Dt, σπ(m,PK)) = π | σπ(m,PK) is valid] − nQ1

2k

> 1
n−t + ν(k). Here, ν(k) ≡ ε(k)− nQ1

2k
non-negligibale in k

After execution, A(ω) returns to M an integer 1 ≤ j ≤ n. M outputs 1 if j = π,
or outputs 0/1 with equal probability otherwise:

22

2018 Bassam El Khoury Seguias c©

Using the setting described above, one can now calculate the probability of M
guessing whether (G,α⊗G, β ⊗G, γ ⊗G) is DDH or not. The calculation is the
same as the one previously conducted in section 6 of parts 5 and 6 and leads us to
conclude:

P [M(G,α⊗G, β ⊗G, γ ⊗G) = b] ≥ 1
2

+ ν(k)
4

Since ν(k) is non-negligible in k, the above probability outperforms random
guessing. This contradicts the intractability of DDH. Similarly, we can show
Pω,H1,HT [AH1,HT (ω)(m,PK,Dt, σπ(m,PK)) = π] | σπ(m,PK) is valid] is also
bounded from below. We finally conclude that for any polynomial Q(k):

1
n−t −

1
Q(k)
≤ Pω,H1,HT [AH1,HT (ω)(m,PK,Dt, σπ(m,PK)) =

π | σπ(m,PK) is valid] ≤ 1
n−t + 1

Q(k)

• Case 2: ~xπ /∈ Dt and t = n− 1.

In this case, A(ω) can check if the key-image vector ~Iπ ≡ [I1
π ... I

m
π]T appearing in

σπ(m,PK) matches the key-image vector of any of the compromised users (i.e.,

[x̂1
i ⊗H2(x̂1

i) ... x̂
m
i ⊗H2(x̂mi)]T , for i ∈ {1, ., t = (n− 1)}). With overwhelming

probability, none of them will match since we proved that the scheme is
exculpable and so no one can forge a signature with a tag of a non-compromised
member. Proceeding by elimination, A(ω) can then conclude that the signer is π.

• Case 3: ~xπ ∈ Dt.

In this case, A(ω) can check which of the compromised key-image vectors (i.e.,

[x̂1
i ⊗H2(x̂1

i) ... x̂
m
i ⊗H2(x̂mi)]T , for i ∈ {1, .., t}) matches the key-image vector

appearing in σπ(m,PK)). Only one of them will match (due to exculpability),
subsequently revealing the identity of the signer.

7 Security analysis - Linkability

The linkability property means that if a secret key of a given secret key vector is used
in more than one signature, then the resulting signatures will be linked and flagged by
L (the linkability algorithm).

We proved in part 5 of this series that a signature scheme is linkable if and only if
∀n ∈ {1, .., l − 1},∀L ≡ {y1, .., yn} a ring of n members, it is not possible to produce
(n+ 1) valid signatures with pairwise different key-images such that all of them get
labeled independent by L. This result can be easily adapted to the case of a public key
matrix PK ≡ [~y1... ~yn] (where ~yi ≡ [y1

i ... y
m
i]T , i ∈ {1, ..., n}) and secret key vectors

{ ~x1, ..., ~xn}:

23

2018 Bassam El Khoury Seguias c©

A signature scheme is linkable
⇐⇒

∀n ∈ {1, .., l − 1},∀PK ≡ [~y1... ~yn] a ring of n members, it is not possible to produce
(n+ 1) valid signatures such that no 2 key image vectors share a component in common.

The proof of the above equivalence is identical to the one previously outlined in section
7 of part 5. To prove that the MLSAG scheme is linkable we follow a reductio ad
absurdum approach, similar to the one described in part 5:

• Assume that the MLSAG signature scheme is not linkable.

• The equivalence above would imply that ∃PK ≡ [~y1... ~yn] such that it can produce
(n+ 1) valid signatures such that no 2 key image vectors share a component in
common. This means that

∀i, u ∈ {1, .., n}, ∀j, v ∈ {1, ...,m},
i 6= u⇒ (Iji ≡ xji ⊗H2(yji)) 6= (Ivu ≡ xvu ⊗H2(yvu))

• This implies that there must exist a signature (from the set of (n+ 1) valid

signatures) with key-image vector ~Iδ ≡ [I1
δ ... I

m
δ]T for which ∃k ∈ {1, ...,m} such

that

∀i ∈ {1, .., n}, ∀j ∈ {1, ...,m},
Ikδ 6= [Iji ≡ xji ⊗H2(yji)]

Denote this signature by σδ ≡ (I1
δ , ..., I

m
δ , c1, r

1
1, .., r

m
1 , ..., r

1
n, ..., r

m
n).

• When verifying the validity of σδ, V first computes the following:

{ Let c′1 = c1

{ ∀i ∈ {1, .., n}:

{ ∀j ∈ {1, ...,m}, compute:

{ (Lji)
′ ≡ (rji ⊗G) ⊕ (c′i ⊗ y

j
i)

{ (Rj
i)
′ ≡ (rji ⊗H2(yji)) ⊕ (c′i ⊗ I

j
δ)

{ c′i+1 ≡ H1(m, (L1
i)
′, (R1

i)
′, ..., (Lmi)′, (Rm

i)′) (mod l)

• ∀i ∈ {1, ..., n}, and for k as identified above, the system of 2 equations given by
(Lki)

′ and (Rk
i)
′ can be equivalently written as:

{ rki + c′ix
k
i = logG((Lki)

′)

{ rki ⊗H2(yki))⊕ (c′i ⊗ Ikδ) = (Rk
i)
′

For a given (Lki)
′, (Rk

i)
′, and i ∈ {1, .., n}, this constitutes a system of 2 equations

in variables rki and c′i.

24

2018 Bassam El Khoury Seguias c©

• Since ∀i ∈ {1, .., n}, ∀j ∈ {1, ...,m}, Ikδ 6= xji ⊗H2(yji), the system of 2 equations
corresponding to each i is independent and admits a unique solution ((rki)

∗, (c′i)
∗)

for any given (Lki)
′ and (Rk

i)
′. In particular, that means that the value c′1 ≡ c1 is

well defined and equal to (c′1)∗.

• By virtue of being a valid signature, σδ must satisfy V ’s verification equation
requiring that

c1 = c′n+1 ≡ H1(m, (L1
n)′, (R1

n)′, ., (Lmn)′, (Rm
n)′) (mod l)

But RO H1 is random by definition. The probability that it outputs a specific
value is eqal to 1

q
(recall that the range of H1 = Fq). Since by design we have

2k < l − 1 < l < q, we conclude that the probability that

H1(m, (L1
n)′, (R1

n)′, ., (Lmn)′, (Rm
n)′) (mod l) = (c′1)∗

is upper-bounded by 1
2k

and is hence negligible. In other terms, the probability
that σδ is a valid signature is negligible.

We hence conclude that the MLSAG scheme is linkable.

References

[1] E. Fujisaki and K. Suzuki. Traceable ring signatures. Public Key Cryptography,
pages 181–200, 2007.

[2] S. Noether and A. Mackenzie. Ring confidential transactions. Monero Research Lab,
2016.

25

