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1 Introduction

Group, field and elliptic curve theories make a regular appearance in the study of
crypto-assets including but not limited to cryptocurrencies. For example, the security
strength of a number of crypto-specific primitives relies on the math of elliptic curve
groups over finite fields. These groups constitute a robust infrastructure to generate
adequate public keys from private ones.

Groups and fields are foundational pillars of modern algebra. While in elementary
algebra we rely on common arithmetic operations (e.g., addition and multiplication of
real numbers), in modern algebra we raise further the level of abstraction. In particular,
we introduce more general counterparts to real number addition and multiplication and
define them over more general sets. An important objective is to study the common
properties of all sets on which a fixed number of operations are defined. These operations
tend to be interrelated in some definite way (e.g., distributivity of multiplication over
addition).

In this post, we provide a concise (but by no means comprehensive) introduction to
group and finite-field theory at the level needed to better appreciate the mathematical
foundation of crypto assets. In a subequent post we build on this material to introduce
elliptic curve groups defined over finite fields. The interested reader could consult e.g., [1]
for a deeper dive on the theory of finite fields and its applications.

2 Groups - Axiomatic formulation

A group is a set G together with a binary operation ∗ on G such that (G, ∗) satisfies
the following properties:

1. Associativity : a, b, c ∈ G ⇒ a ∗ (b ∗ c) = (a ∗ b) ∗ c

2. Existence of identity : ∃e ∈ G such that ∀a ∈ G, we have a ∗ e = e ∗ a = a
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3. Closure: a, b ∈ G ⇒ a ∗ b ∈ G

4. Existence of inverse: ∀a ∈ G, ∃ an element a−1 ∈ G such that a∗a−1 = a−1∗a = e.
We say that a−1 is the inverse of a in (G, ∗)

If in addition, the group satisfies the commutativity property: a, b ∈ G ⇒ a∗b = b∗a,
the group (G, ∗) is called abelian.

The aforementioned four axioms have an equivalent formulation in which the closure
and existence of inverse properties get substitued with the permutation property. The
axiomatic formulation becomes:

1. Associativity : a, b, c ∈ G ⇒ a ∗ (b ∗ c) = (a ∗ b) ∗ c

2. Existence of identity : ∃e ∈ G such that ∀a ∈ G, we have a ∗ e = e ∗ a = a

5. Permutation: ∀a ∈ G, the set a ∗G ≡ {a ∗ b | b ∈ G} is a permutation of G

Proof (1, 2, 3 and 4 ⇒ 5): For a fixed a ∈ G, consider the map

ha : G→ a ∗G
ha(g) = a ∗ g

Proving that the permutation property holds is equivalent to showing that ∀a ∈ G, the
map ha is a bijection such that the domain G and the range a ∗G are one and the same.
To see this, note that ∀a ∈ G :

• g ∈ G ⇒ a ∗ g ∈ G. (by the closure property). Hence a ∗G ⊂ G.

• ha is surjective: This is clear from the definition of ha since any element of its
range is of the form a ∗ g for some g ∈ G and hence admits g as a pre-image.

• ha is injective: Suppose that a ∗ g1 = a ∗ g2, for some g1, g2 ∈ G. The existence of
inverse property, coupled with the associativity property allow us to write

g1 = (a−1 ∗ a) ∗ g1 = a−1 ∗ (a ∗ g1) = a−1 ∗ (a ∗ g2) = (a−1 ∗ a) ∗ g2 = g2.

Proof (5 ⇒ 3): If a, b ∈ G, then (a ∗ b) ∈ (a ∗G) by definition. Since the
permutation property holds, then a ∗G is a permutation of G and so (a ∗ b) ∈ G.
Consequently, the closure property holds.

Proof (1, 2, and 5 ⇒ 4): If a ∗G is a permutation of G, then by the existence of
identity property it necessarily contains the identity element e of G. Consequently,
∃g ∈ G such that a ∗ g = e. In order to demonstrate that the existence of inverse
property holds, we still have to show that g ∗ a = e. To do so, consider the set g ∗G. By
the permutation property, we know that g ∗G is a permutation of G and so ∃g′ ∈ G
such that g ∗ g′ = e. By invoking the associativity property, we can write

a = a ∗ e = a ∗ (g ∗ g′) = (a ∗ g) ∗ g′ = e ∗ g′ = g′ (Q.E.D.)
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The alternative axiomatic definition paves the way to a convenient representation of a
group using a Cayley table. Let G ≡ {g1, g2, ..., gn}. The Cayley table is simply:

One can observe that the ith row in the table above is none other than gi ∗G which
corresponds to a specific permutation of G.

Uniqueness results

• The group identity element is unique. To see why, suppose there exists a group
(G, ∗) with two identity elements e and e′. By definition of e, it must be that
e′ = e′ ∗ e. Moreover, by definition of e′, it must be that e′ ∗ e = e. As a result, we
must have have e′ = e.

• Similarly, the inverse of a group element is unique. To prove it, we make use of
the associativity and existence of inverse properties. Let a ∈ G and suppose that
it admits two inverses i1 and i2 ∈ G. It must be that

a ∗ i1 = i1 ∗ a = a ∗ i2 = i2 ∗ a = e.

And so we can write:

i1 = i1 ∗ e = i1 ∗ (a ∗ i2) = (i1 ∗ a) ∗ i2 = e ∗ i2 = i2

3 Group examples

Group examples abound. In this post, we limit ourselves to two examples of
particular importance: the group of integers modulo n, and the group of powers of an

3



2018 Bassam El Khoury Seguias c©

arbitrary element of some group. The importance of the former is partly derived from
its role in building the canonical example of a finite field whenever n is a prime number
(see section 8 below). Finite fields are of great significance in crypto in particular
because the Discrete Logarithm (DL) problem is thought to be hard on their
multiplicative subgroup. This intractability is at the heart of the security strength of a
vast number of crypto primitives. The importance of the latter example comes from its
crucial role in the study of cyclic groups, regularly used in the context of crypto.

Example 1: The group (Zn,⊕) of integers modulo n.

In order to define the group’s underlying set and corresponding binary operation, we
will need to introduce the notions of equivalence relation, equivalence class, and
modulo arithmetic.

1. Equivalence relation: An equivalence relation on a set S is a subset R ⊂ S × S
that satisfies three properties:

(a) Reflexivity : ∀s ∈ S, (s, s) ∈ R
(b) Symmetry : (s, t) ∈ R ⇒ (t, s) ∈ R
(c) Transitivity : (s, t), (t, u) ∈ R ⇒ (s, u) ∈ R

2. Equivalence class: We let [s]R denote the set {t ∈ S | (s, t) ∈ R} and refer to it
as the equivalence class of the element s ∈ S under the equivalence relation R.
The set E ≡ {[s]R, s ∈ S} of equivalence classes forms a partition of S. To see
why, note the following:

(a) E covers S: ∀s ∈ S, (s, s) ∈ R (by the reflexivity property), hence s ∈ [s]R.
As a result, ∀s ∈ S, s belongs to at least one equivalence class.

(b) Equivalence classes are disjoint:

• let [s]R and [t]R be two equivalence classes on S that share an element
i ∈ S in common. Hence (s, i) ∈ R and (t, i) ∈ R.
• Let f 6= i be any other element of [t]R. Hence (t, f) ∈ R.
• Since (t, i) ∈ R, then (i, t) ∈ R (by the symmetry property). And since

(i, t) ∈ R and (t, f) ∈ R, then (i, f) ∈ R. (by the transitivity property).

• We also know that (s, i) ∈ R. Using the transitivity property on (s, i)
and (i, f), we conclude that (s, f) ∈ R. As a result, f ∈ [s]R.

Similarly, we can show that any element of [s]R is also an element of [t]R.

3. Modulo arithmetic: One says that a positive integer a is congruent to another
positive integer b modulo n if n divides (a− b). An equivalent statement would be
that a and b have the same remainder upon division by n. We denote this by
a ≡ b (mod n).

We are now in a position to define our first group example. Consider the set Z of
integers. ∀n ∈ Z, define a binary relation Rn on Z× Z as follows:

(a, b) ∈ Rn ⇐⇒ a ≡ b (mod n)
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One can easily see that Rn satisfies all three properties of an equivalence relation. We
can therefore define equivalence classes on Z under the equivalence relation Rn. We
denote by [a] ≡ [a]Rn the equivalence class of a ∈ Z. By definition of Rn, we have:

[a] = {a+ kn | k ∈ Z} ≡ {..., a− 2n, a− n, a, a+ n, a+ 2n, ...}

Note that [a] is equivalent to [a+ kn], for all k ∈ Z. The equivalence classes associated
with the equivalence relation Rn form a partition of Z and can be listed as follows:

[0] ≡ {..., −2n, −n, 0, n, 2n, ...}
[1] ≡ {..., −2n+ 1, −n+ 1, 1, n+ 1, 2n+ 1, ...}

...
[n− 1] ≡ {..., −n− 1, −1, n− 1, 2n− 1, 3n− 1, ...}

We let Zn ≡ {[0], [1], ..., [n− 1]}, and define the binary operation ⊕ on a tuple
(a, b) ∈ Zn × Zn as follows:

[a]⊕ [b] = [a+ b], where + denotes regular addition of integers.

This relationship does not depend on a particular element within a given equivalence
class. Indeed, let a+ kn be any element of [a] and b+ k′n any element of [b], for
k, k′ ∈ Z. Applying the binary relation on the equivalence classes [a+ kn] and [b+ k′n]
yields:

[a+ kn]⊕ [b+ k′n] = [a+ b+ (k + k′)n] = [a+ b] = [a] + [b]

We claim that (Zn,⊕) is an abelian group. To prove this, we show that it satisfies the
group axioms:

• Associativity : Let [a], [b], [c] ∈ G. We can write

[a]⊕ ([b]⊕ [c]) = [a]⊕ [b+ c]

= [a+ (b+ c)] = [(a+ b) + c] (by associativity of +)

= [a+ b]⊕ [c] = ([a]⊕ [b])⊕ [c]

• Existence of identity : Let e ≡ [0]. Clearly e ∈ Zn. Moreover, ∀[a] ∈ Zn, we have

[a]⊕ e = [a]⊕ [0] = [a+ 0] = [a]

Similarly, we can check that e⊕ [a] = [a]. Hence e satisfies the attributes of the
identity element.

• Closure: Let [a], [b] ∈ Zn. By definition of ⊕, we have [a]⊕ [b] = [a+ b]. And since
the set Zn ≡ {[0], [1], ..., [n− 1]} forms a partition of Z, we can be confident
that [a+ b] corresponds to exactly one element of this set and hence [a+ b] ∈ Zn.

• Existence of inverse: ∀[a] ∈ Zn, we have [a]⊕ [−a] = [a− a] = [0] = e. Similarly,
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we can conclude that [−a]⊕ [a] = e. Noting that [−a] ∈ Zn, this shows that each
element of Zn admits an inverse that is also an element of Zn.

• Commutativity : By definition of ⊕, we have

[a]⊕ [b] = [a+ b] = [b+ a] = [b]⊕ [a].

Example 2: The group of powers of an arbitrary element of some group

Let (G, ∗) be a group and a ∈ G. Consider the set of all powers of a defined as

{a} ≡ {ai, i ∈ N∗}, where ai ≡ a ∗ a ∗ ... ∗ a (i times)

We claim that ({a}, ∗) is a group. To prove it, we show that ({a}, ∗) satisfies the group
axioms.

• Associativity : Let ai, aj and ak be elements of {a}. We get the following equalities:

ai ∗ (aj ∗ ak) = ai ∗ (aj+k) = ai+(j+k) (by definition of power)

= a(i+j)+k (by associativity of +)

= ai+j ∗ ak = (ai ∗ aj) ∗ ak

• Existence of identity : Note that since G is finite, and since all powers of a are
elements of G (because of the closure property of (G, ∗)), the powers of a cannot
yield different elements ad infinitum. Consequently, there must exist a least
integer n such that an = ai for some 1 ≤ i < n. We claim that the (n− i)th power
of a, is the identity element of {a}. To see why, let ar be any element of {a}. We
can write

ar ∗ an−i = ar−i ∗ an (by definition of power)

= ar−i ∗ ai (since an = ai)

= ar (by definition of power)

Similarly, we can show that an−i ∗ ar = ar. Since ar was arbitrary in {a}, we
conclude that an−i satisfies the properties of an identity element.

• Closure: Let ai, aj be two elements of {a}. By the definition of power of a, we get
ai ∗ aj = ai+j. This is clearly a power of a and therefore an element of {a}.

• Existence of inverse: Let ar be an arbitrary element of {a}. Recall that the
identity element of {a} is equal to an−i. Since i < n, we can always find a least
integer k such that k(n− i)− r > 0. We get:

an−i = e = e ∗ e ∗ ... ∗ e (k times)
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= ak(n−i) = ak(n−i)+r−r = ar ∗ ak(n−i)−r = ak(n−i)−r ∗ ar

Since k(n− i)− r > 0, we conclude that ak(n−i)−r ∈ {a} and qualifies as the
inverse of ar.

4 Subgroups, cosets and Lagrange’s theorem

Given a group (G, ∗) and a subset H ⊂ G, we say that (H, ∗) a subgroup of (G, ∗) if
(H, ∗) is a group. A subgroup is mandated to be a group with respect to the same
operation of the parent group. A direct consequence is that the identity element of
(H, ∗) is the same as that of (G, ∗). Clearly, the power group {a} previously introduced,
is a subgroup of (G, ∗) for all a ∈ G.

If (H, ∗) is a subgroup of (G, ∗), one can define a relation on G×G as follows:

RH : G×G −→ {1, 0}

RH(a, b) = 1 ⇐⇒ ∃h ∈ H such that b = a ∗ h

RH is an equivalence relation on G×G because it has all three desired properties:

1. Reflexivity : Let e denote the identity element of (G, ∗). ∀a ∈ G, a = a ∗ e. Since
(H, ∗) is a subgroup of (G, ∗), e is also the identity element of (H, ∗) and e ∈ H.
Consequently,RH(a, a) = 1.

2. Symmetry : Let a, b ∈ G such that RH(a, b) = 1. We know that ∃h ∈ H such that
b = a ∗ h. Moreover, since (H, ∗) is a subgroup, h must admit a unique inverse
h−1 ∈ H. This implies that b ∗ h−1 = a. Therefore, RH(b, a) = 1.

3. Transitivity : Let a, b, c ∈ G such that RH(a, b) = RH(b, c) = 1. We know that
∃h1, h2 ∈ H such that b = a ∗ h1 and c = b ∗ h2. Consequently, c = (a ∗ h1) ∗ h2. By
associativity of ∗ on G, we get c = a ∗ (h1 ∗ h2). Since (H, ∗) is a group, the closure
property guarantees that h3 ≡ h1 ∗ h2 ∈ h. Hence c = a ∗ h3 with h3 ∈ H, and so
RH(a, c) = 1.

The equivalence relation RH on G induces a partition of G into non-empty equivalent
classes called left cosets of G modulo H. For a ∈ G, we denote its corresponding
equivalence class by:

[a] = a ∗H = {a ∗ h | h ∈ H}

By virtue of being a group, (G, ∗) satisfies the permutation property i.e., ∀a ∈ G, a ∗G
is a permutation of G. A direct consequence is that for any subset S ⊂ G, a ∗ S will
also be a permutation of S. In particular, a ∗H is a permutation of H. This shows that
every left coset of G modulo H has the same cardinality as H. We now state and prove
a foundational theorem of group theory known as Lagrange’s theorem.
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Lagrange’s theorem The order of (i.e., the number of elements conained in) any
subgroup (H, ∗) of a group (G, ∗) divides the order of (G, ∗).

Proof : Consider the equivalence classes generated by the relation RH as previously
defined. The classes form a partition of G. Moreover, they all contain the same number
of elements as H (as we just proved). We can then write:

order(G, ∗) = (# of equivalence classes generated by RH) × order(H, ∗). Q.E.D

5 Cyclic groups

Cyclic groups play a fundamental role in in the construction of secure cryptographic
primitives used in e.g., cryptocurrencies. For one thing, a generator of a cyclic group is
usually used as a base point to build public keys out of private ones. But most
importantly, the security of a number of crypto primitives relies on the presupposed
intractability of the Discrete Logarithm problem (DL) on certain cyclic groups.
These include e.g.,

• The multiplicative cyclic group of a finite field of large prime order

• An appropriately chosen cyclic subgroup of an elliptic curve group

We say that a group (G, ∗) is cyclic if and only if it can be generated by at least one of
its elements, called a generator. In other words:

A group (G, ∗) is cyclic ⇐⇒ ∃g ∈ G such that G = {g}

In what follows, we state and prove relevant results about cyclic groups in general.

1. Any group of prime order is cyclic and can be generated by any of its non-identity
elements

Proof :

• Let (G, ∗) be a group and p a prime number such that order(G, ∗) = p

• By Lagrange’s theorem, the order of any subgroup of (G, ∗) must divide p. As
a result, the order of any subgroup of (G, ∗) can either be equal to 1 or to p.

• The singleton {e} consisting of (G, ∗)’s identity element yields the subgroup
({e}, ∗) whose order is equal to 1. It is called the trivial subgroup.

• Any other subgroup of (G, ∗) must be of order at least 2 because at a
minimum, it must contain a non-identity element in addition to the identity.

• Consequently, the order of any subgroup of (G, ∗) other than the trivial
subgroup {e} must be equal to p.

• In particular, the subgroups generated by each non-identity element must
have an order equal to p. Therefore ∀g ∈ G, g 6= e, it must be that g is a
generator of G, i.e., G = {g}. Q.E.D.
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2. Every subgroup of a cyclic group is cyclic

Proof :

• Let (G, ∗) be a cyclic group. Hence ∃a ∈ G such that G = {a}. Let (H, ∗) be
a subgroup of (G, ∗) ≡ ({a}, ∗).
• Either H = {e} or H contains at least one positive power of a. If H = {e},

then it is clearly cyclic. Otherwise, let d be the least positive exponent such
that ad ∈ H. We show that H is cyclic by demonstrating that H = {ad}
• By definition, we have the following equivalences:

H = {ad} ⇐⇒ ∀h ∈ H, h = as where as is a positive power of ad

⇐⇒ ∀h ∈ H, h = as where s is a positive mutiple of d

• Since H is a subset of {a}, anyone of its elements must be of the form as

where s is a positive integer greater than or equal to d.

• Suppose however that s is not a multiple of d. We can write s = qd+ r with
0 < r < d and q ∈ N∗. This implies that as = aqd+r = (ad)q ∗ ar.
• By virtue of being an element of H, ad admits an inverse a−d ∈ H. The

closure property implies that both (ad)q and (a−d)q are elements of H. One
can also easily verify that (a−d)q is the inverse of (ad)q. We then write:

(a−d)q ∗ as = (a−d)q ∗ ((ad)q ∗ ar) = ar

• Noting that (a−d)q and as are both elements of H, we conclude that ar ∈ H.
• But r < d, being the remainder of the division of s by d. This contradicts the

fact that d is the least positive integer such that ad ∈ H. Consequently, we
conclude that s must be a multiple of d.

• Coupled with the fact that ∀h ∈ H, h is of the form as for some positive
integer s greater than or equal to d, we conclude that H = {ad}. Q.E.D.

3. In a finite cyclic group ({a}, ∗) of order m, the element ak generates a subgroup
({ak}, ∗) of order m

gcd(k,m)

Proof :

• Let d ≡ gcd(k,m).

• It is easy to see that the order of ({ak}, ∗) corresponds to the least integer n
such that (ak)n = e (where e is the identity element of the group). Similarly,
m is the least integer that satisfies am = e.

• We claim that akn = e ⇐⇒ m divides kn

⇐: If m divides kn, then kn = αm for some integer α. Consequently,
akn = aαm = (am)α = eα = e.

⇒: Suppose akn = e, with kn not a multiple of m, i.e., kn = qm+ r, where
0 < r < m and q ∈ N. This implies e = akn = aqm ∗ ar = ar, a
contradiction since m is the least integer that satisfies am = e.
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• Next, we claim that m divides kn ⇐⇒ m
d

divides n

⇒: If m divides kn, then m
d

divides kn
d

(note that m
d

and k
d

are both integers
since d ≡ gcd(k,m)). Since gcd(k

d
, m
d

) = 1, the integers m
d

and
k
d
donotshareacommondivisorgreaterthan1. But m

d
divides kn

d
and so it

must be that m
d

divides n.

⇐: If m
d

divides n, it must be that m divides dn. But d = gcd(k,m) and so d
divides k. As a result, m divides kn.

• The previous two equivalences prove that

akn = e ⇐⇒ m
d

divides n.

Recall that n is the least integer that satisfies akn = e. The equivalence then
dictates that n must be the least integer such that m

d
divides n.

Consequently, it must be that n = m
d

= m
gcd(k,m)

. Q.E.D.

4. In a finite cyclic group ({a}, ∗) of order m, for any positive divisor f of m, {a}
contains one and only one subgroup of order f.

Proof :

Existence: Consider the subgroup ({a
m
f }, ∗) generated by the element a

m
f ∈ {a}

(note that m
f

is an integer since f is a divisor of m). By result #3 above, the

order of ({a
m
f }, ∗) must be equal to m

gcd(m
f
,m)

which is equal to m
m
f

= f. This shows

that ({a},*) admits at least one subgroup of order f.

Uniqueness:

• Suppose that ({a},*) has another subgroup of order f. By result #2 above,
every subgroup of a cyclic group is cyclic. Therefore, this other subgroup of
order f must be cyclic and hence generated by a certain power ai of a.

• By result #3 above, it must be that f = order({ai}, ∗) = m
gcd(i,m)

.

Consequently, m
f

= gcd(i,m).

• This shows that m
f

divides i, which allows us to write i = q(m
f

) for some

q ∈ Z. And so ai = aq(
m
f
) = (a

m
f )q ∈ {a

m
f }.

• Since ai ∈ {a
m
f }, we conclude that ({ai}, ∗) is a subgroup of ({a

m
f }, ∗). But

recall that ({ai}, ∗) and ({a
m
f }, ∗) have the same order, and so they must be

the same group. Q.E.D.

5. Let ({a}, ∗) be a finite cyclic group of order m, and f a divisor of m. Then {a}
contains φ(f) elements of order f. Moreover, m =

∑
f | f divides m φ(f).

Note 1: The order of an element of a group is the order of the subgroup
generated by that element.

Note 2: φ(f) denotes the Euler’s totient function applied to f which evaluates to
the number of integers 1 ≤ i ≤ f that are relatively prime to f (i.e., integers i
that satisfy gcd(i, f) = 1).
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Proof :

• Recall that result #3 stated that in a finite cyclic group ({a}, ∗) of order m,
the element ak generates a subgroup ({ak}, ∗) of order m

gcd(k,m)
.

• Therefore, if we’re given an integer d that divides m, one can identify the
integers 1 ≤ k ≤ m such that gcd(k,m) = d, and conclude that each ak

generates a subgroup ({ak}, ∗) of order equal to m
d
. This implies that the

total count of such k’s corresponds to the number of elements in {a} that
generate a subgroup of order m

d
.

• Since f divides m, let d = m
f

so that f = m
d
. As a result, the number of

elements in {a} that generate a subgroup of order f is equal to the number
of integers 1 ≤ k ≤ m such that gcd(k,m) = d = m

f
.

• ∀k, we know that k is a multiple of gcd(k,m) = m
f
. In particular, for each

valid k we can write k = q(m
f

), where q ∈ N and 1 ≤ k = q(m
f

) ≤ m. As a

result, the number of elements in {a} that generate a subgroup of order f is
equal to the number of integers of the form q(m

f
) such that 1 ≤ q(m

f
) ≤ m

and gcd(q(m
f

),m) = m
f
.

• Next, note the following equivalences:

gcd(q(m
f

),m) = m
f
⇐⇒ gcd(q(m

f
), f(m

f
)) = m

f
⇐⇒ gcd(q, f) = 1

We then conclude that the eligible integers of the form q(m
f

) are those that

correspond to integers f
m
≤ 1 ≤ q ≤ f such that q is coprime to f. This is

none other that φ(f).

• Finally, by result #4 above, we know that in a finite cyclic group of order m,
there exists one and only one subgroup of order f for every divisor f of m.
Moreover, each element of the cyclic group belongs to one and only one
subgroup. Consequently, m =

∑
f | f divides m φ(f). Q.E.D.

6. A finite cyclic group ({a}, ∗) of order m contains φ(m) generators. The
generators, are the powers aq of a such that gcd(q,m) = 1

Proof : This is a special case of result #5 above, applied when f = m.

6 Group isomorphism

When comparing the structures of two groups, the mappings between them that
preserve their respective operations take on an important role.

Given groups (G, ∗) and (H,4), a mapping f : G −→ H is called a homomorphism of
G into H if it preserves the operation of (G, ∗). That is:

a, b ∈ G⇒ f(a ∗ b) = f(a)4f(b)

In the context of crypto, an important application of group homomorphism takes the
form of a Pedersen Commitment. In Monero for example, Pederson Commitments are

11



2018 Bassam El Khoury Seguias c©

used to hide the value of a transaction (refer to Part 8 of the Monero series for a
detailed explanation).

If f is also bijective, then it is called an isomorphism. In this case, (G, ∗) and (H,4)
can be thought of as equivalent. Group isomorphisms are a special instance of the more
general theory of categories and functors. The objective of the theory is to elucidate
structural similarities that exist between various areas of mathematics. On a more
subjective note, it may be one of the most beautiful theories of mathematics. For a very
concise yet clear introduction, the interested reader may consult section 10 of [2].

7 Fields - Axiomatic formulation

Fields are algebraic structures that generalize arithmetics that we are used to on R.
More specifically, a field is a set endowed with the notions of addition and
multiplication as well as with their respective inverses subtraction and division.

Formally, a field is a set F with at least two elements and two binary operations ⊕ and
⊗ such that:

1. (F,⊕) is an abelian group. We denote its identity element by 0.

2. (F,⊗) satisfies the 1)Associativity, 2) Existence of identity, 3) Closure, and 5)
Commutativity group axioms. However, (F,⊗) is not a group since the Existence
of inverse axiom is not observed for all elements of F. More specifically, the
additive identity element 0 is not required to admit a multiplicative inverse.

3. (F∗,⊗) ≡ (F− 0,⊗) is an abelian group. This means that by removing the
additive identity element 0, the resulting set becomes an abelian group under
multiplication. We denote its identity element by 1. This group is known as the
field’s multiplicative group (it turns out that it is also cyclic, but we will not
prove it in this post).

4. Distributivity of ⊗ over ⊕: ∀a, b, c ∈ F, we have (a⊕ b) ⊗ c = (a⊗ c) ⊕ (b⊗ c)

It is common to refer to ⊕ as the field’s addition and to ⊗ as the field’s multiplication.
One implication of the aforementioned axioms is that ∀a ∈ F, a⊗ 0 = 0. To see this,
note the following:

a = a⊗ 1 = a⊗ (0⊕ 1) = (a⊗ 0)⊕ (a⊗ 1) = (a⊗ 0)⊕ a

Being an element of F, a admits an additive inverse (i.e., with respet to ⊕). As a result
of cancelling a from each side of the above equality, we get 0 = a⊗ 0.

The order of F is the number of elements that it contains. F is called a finite field if its
order is finite. The theory of finite fields is rich and beautiful. One of its most
important results states that finite fields can only have orders of the form pm, where p is
any prime number and m any positive integer. Moreover, it turns out that all fields that
contain the same number of elements are equivalent.

12
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To understand and better appreciate the canonical example of a finite field of order pm,
one will need to study prime polynomials over finite fields, which is out of scope.
Nevertheless, we will introduce the case of m = 1 corresponding to the most basic type
of a finite field, namely the field Fp. It is the canonical example of finite fields of prime
order p.

8 The field Fp of integers modulo p

Let Zn and ⊕ be as defined in section 3 when we introduced the abelian group
(Zn,⊕) of integers modulo n. Recall that

• Zn ≡ {[0], [1], ..., [n− 1]}, where [a] ≡ {a+ kn | k ∈ Z}, and

• ⊕ is defined on Zn × Zn to be [a]⊕ [b] = [a+ b], where + denotes regular
addition of integers.

We introduce a multiplicative operation on Zn×Zn denoted by ⊗ and defined as follows:

∀[a], [b] ∈ Zn, [a]⊗ [b] = [a× b], where × denotes regular multiplication of integers.

Note that this relationship does not depend on a particular element within a class.
Indeed, let a+ kn be any element of [a] and b+ k′n any element of [b], for k, k′ ∈ Z.
Applying the binary relation on the equivalence classes [a+ kn] and [b+ k′n] yields:

[a+ kn]⊗ [b+ k′n] = [ab+ ak′n+ bkn+ kk′n2]

= [ab+ (ak′ + bk + kk′n)n)] = [a× b] = [a]⊗ [b]

We claim that (Zn,⊕,⊗) is a field if and only if n is prime.

⇒: Suppose n were not prime. We will show that (Z∗n,⊗) would fail to satisy the
closure axiom and as a result, would not be a group. Indeed, since n is composite, we
can write n = a× b, 1 < a, b < n. Clearly, [a] and [b] are elements of Z∗n. However,

[a]⊗ [b] = [a× b] = [n] = [0] ≡ 0 /∈ Z∗n. Q.E.D.

⇐: Let n = p where p is a prime number. We have:

(Zp,⊕) is an abelian group: We previously proved in section 3 that this result holds
for any positive integer n, and so holds true in particular when n = p is a prime. Its
identity element is [0] ≡ 0

(Zp,⊗) satisfies the 1)Associativity, 2) Existence of identity, 3) Closure, and
5) Commutativity group axioms:

• Associativity : Let [a], [b], [c] ∈ Zp and notice that:

[a]⊗ ([b]⊗ [c]) = [a]⊗ [b× c] = [a× (b× c)]

= [(a× b)× c] = [a× b]⊗ [c] = ([a]⊗ [b])⊗ [c] Q.E.D.

13
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• Existence of identity : We claim that [1] is the identity element. Clearly, [1] ∈ Zp.
Moreover, ∀a ∈ Zp we have

[a]⊗ [1] = [a× 1] = [a], and [1]⊗ [a] = [1× a] = [a] Q.E.D.

• Closure: Let [a], [b] ∈ Zp. By definition of ⊗, we have [a]⊗ [b] = [a× b]. And since
the set Zp ≡ {[0], [1], ..., [p− 1]} forms a partition of Z, we can be confident that
[a× b] corresponds to exactly one element of this set and hence [a× b] ∈ Zp.
Q.E.D.

• Commutativity : ∀[a], [b] ∈ Zp, we can use the commutativity of regular
multiplication on integers to conclude that

[a]⊗ [b] = [a× b] = [b× a] = [b]⊗ [a]. Q.E.D.

(Z∗p,⊗) is an abelian group. We prove that it satisfies all five group axioms:

• Associativity : We previously proved associativity in Zp, which automatically
implies associativity in Z∗p

• Existence of identity : We previously showed that [1] is the identity element in Zp.
This also implies that [1] is the identity element in Z∗p

• Closure: Let [a], [b] ∈ Z∗p. Since p is prime, then ∀ 0 < a, b < p, a× b 6≡ 0 (mod p).
If this were not true, one would be able to write a× b = kp for some positive
integer k. And since p is prime, it must be that boh a and b divide k. Hence a× b
divides k, implying that k ≥ a× b. This results in kp being strictly greater than
a× b, a contradiction. Consequently [a]⊗ [b] = [a× b] 6= [0] and so
[a]⊗ [b] ∈ Z∗p. Q.E.D.

• Existence of inverse: Our purpose is to show that ∀[a] ∈ Z∗p, ∃[x] ∈ Z∗p such that
[a]⊗ [x] = [x]⊗ [a] = 1 ≡ [1]. Note that [a]⊗ [x] = [1] is equivalent to
[a× x] = [1], which in turn is equivalent to ax ≡ 1 (mod p). It turns out that
when a and p are relatively prime, such an x always exists. To prove this, we
make use of the following theorem

Theorem: Given a, b ∈ Z, g = gcd(a, b), ∃x, y ∈ Z such that ax+ by = g.

A corollary to the theorem is that if a and b are relatively prime, then one can
find integers x and y such that ax+ by = 1. In our case, we know that a and p are
relatively prime because p is prime and a < p. As a result, the theorem leads us to
conclude that ∃x such that ax ≡ 1 (mod p). This in turn, proves that [a] admits
an inverse equal to [x].

Proof :

{ Since a < p, we can write p = aq + r1 with 0 ≤ r1 < a.

14
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{ Next, note that gcd(p, a) = gcd(a, r1). To see this, observe that gcd(p, a)
divides p and a and hence must divide r1 = p− aq. As a result, gcd(p, a)
must divide gcd(a, r1). Similarly, gcd(a, r1) divides a and r1 and hence must
divide p = aq + r1 As a result, gcd(a, r1) must divide gcd(p, a). Hence
gcd(p, a) =gcd(a, r1).

{ So instead of finding gcd(p, a), one can find gcd(a, r1). We now write
a = r1q1 + r2 with 0 ≤ r2 < r1, and conclude that gcd(a, r1) = gcd(r1, r2).

{ Repeating the above step and noting that the remainder is always a
non-negative integer strictly less than the divisor, we eventually reach the
case where rn = 0 after n iterations. And so we get

gcd(p, a) = gcd(a, r1) = gcd(r1, r2) = ... = gcd(rn−1, 0) = rn−1

{ Noting that ri+2 = ri − ri+1qi+1 is a linear combination of ri and ri+1, and
that r1 = p− aq is a linear combination of p and a, we conclude that g ≡
gcd(p, a) = rn−1 is itself a linear combination of p and a. (One can conduct a
back-substitution process to find the values of the coefficients, also known as
Bézout coefficients). Hence g = ax+ by and [a] admits an inverse in Z∗n
equals to [x]. Q.E.D.

• Commutativity : We previously proved commutativity in Zp, which automatically
implies commutativity in Z∗p

Distributivity of ⊗ over ⊕: let [a], [b], [c] ∈ Z∗p. Then

[a]⊗ ([b]⊕ [c]) = [a]⊗ [b+ c] = [a× (b+ c)]

= [a× b + a× c] = [a× b]⊕ [a× c] = ([a]⊗ [b]) ⊕ ([a]⊗ [c]). Q.E.D.
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