
Monero’s Building Blocks
Part 4 of 10 – Herranz & Saèz Generic Ring

Signature Scheme [1]

Bassam El Khoury Seguias
BTC: 3FcVvBZwTUkUrcqJd16RcjR42qT2tDWHWn

ETH: 0xb79Fb9194C8Cc6221368bb70976e18609Ab9AcA8

March 8, 2018

1 Introduction

In the next 4 parts of this series, we look at various ring signature schemes and prove
their security in the RO model. This part is dedicated to the analysis of a generic class
of ring signatures introduced in [1] and inspired by Pointcheval & Stern [2]. We also
introduce a specific instance of the generic scheme which is itself a generalization of the
non-interactive Schnorr signature.

2 Herranz & Saèz generic scheme

The scheme is built on a security parameter k, which by design corresponds to the
length in bits of the output of the random oracle H. Given a message m and a ring
L ≡ {A1, ..., An} of n members, the signing algorithm Σ outputs a signature σ(m,L) ≡
(r1, ..., rn, h1, ...hn, δ) where:

• The ri’s are pairwise-different random elements chosen from a pre-defined large set.
The term pairwise-different means that ∀i, j ∈ {1, ...n}, (i 6= j)⇒ (ri 6= rj).

• ∀i ∈ {1, ...n}, hi = H(m, ri). That means that hi is the RO’s output on query
(m, ri).

• δ is fully determined by m, ri, and hi, for all i ∈ {1, ...n}.

By design, we require that the probability of selecting any particular ri be upper-
bounded by 1

2k−1 . For example, consider the finite field Zq over a large prime q ≥ 2k.
The probability of choosing a particular value for ri in the mutiplicative cyclic group Z∗q
is equal to 1

q−1
(assuming a uniform distribution over Z∗q). Clearly, this is less than or

equal to 1
2k−1

< 1
2k−1 .

1

2018 Bassam El Khoury Seguias c©

3 Security analysis - Unforgeability vis-a-vis EFACM

For unforgeability proofs, we follow the 5-step approach mentioned in part 1 of this series.

Step 1 : To prove that this generic scheme is secure against EFACM in the RO model,
we proceed by contradiction and assume that there exists a PPT adversary A such that:

Pω,r,H[A(ω)H,Σ
H(r) succeeds in EFACM] = ε(k), for some ε non-negligible in k.

Step 2 : Next, we build a simulator S(r′) such that it:

• Does not have access to the private key of any signer.

• Has the same range as the original signing algorithm Σ (i.e., they output
signatures taken from the same pool of potential signatures over all possible
choices of RO functions and respective random tapes r′ and r).

• Has indistinguishable probability distribution from that of Σ over this range .

S(r′) is specific to the particular instance of the generic scheme being used. In what
follows, we build a simulator for the case of a Schnorr ring signature.

The Schnorr ring signature scheme is built on the finite field Zq. Here q ≥ 2k is a large
prime number and k is the security parameter as described earlier. We let g be a
generator of the multiplicative cyclic group Z∗q. We also let L ≡ {A1, ..., An} be a ring of
n members where Ai has an associated key-pair given by (xi ∈ Z∗q, yi ≡ gxi (mod q)).
The Schnorr ring signature scheme is defined as a set of 3 algorithms:

• The key generation algorithm G. On input 1k, it produces a pair
(sk, pk) ≡ (x, y) of matching secret and public keys. The algorithm is modeled as
a PPT Turing machine.

• The ring signing algorithm Σ. Suppose a user Aπ decides to sign a message m
on behalf of the ring of users L ≡ {A1, ..., An} 3 Aπ. Σ proceeds as follows:

1. ∀i ∈ {1, ...n}, i 6= π, choose pairwise different ai’s at random in Z∗q. Assign
ri ≡ gai (mod q). Set hi ≡ H(m, ri).

2. Choose a random a ∈ Z∗q. Assign rπ ≡ gaΠi 6=πy
−hi
i (mod q). If ∃i ∈ {1, ...n}

s.t. i 6= π and rπ = ri, then pick a different a. Set hπ ≡ H(m, rπ).

3. Compute δ = a+
∑

i 6=π ai + xπhπ (mod q)

Σ finally outputs a signature σπ(m,L) ≡ (r1, ..., rn, h1, ...hn, δ). The algorithm is
modeled as a PPT Turing machine.

• The ring verification algorithm V . Given a ring signature σ, a message m, the
set {y1, ...yn} of public keys of the ring members, V verifies the validity of σ(m,L)
by checking the following:

– (Verification equations #1 to #n): hi = H(m, ri), for i ∈ {1, ...n}

2

2018 Bassam El Khoury Seguias c©

– (Verification equation #(n+ 1)): gδ = r1...rny
h1
1 ...y

hn
n (mod q)

V is a deterministic algorithm as opposed to probabilistic.

Note that this scheme satisifies the correctness property. That means that any
signature generated by Σ will satisfy the verification equations with overwhelming
probability. To see why, let σπ(m,L) ≡ (r1, ..., rn, h1, ...hn, δ) be a signature issued by
user π on message m and ring L of size n. By construction, we automatically have
∀i ∈ {1, ...n}, hi = H(m, ri). The first n verification equations are thus met. Moreover,

gδ = ga+
∑
i6=π ai+xπhπ (mod q), (by definition of δ in Σ)

= ga(Πi 6=πri)y
hπ
π (mod q), (since by construction, ri = gai for i 6= π, and yπ = gxπ).

Finally, note that the construction of Σ also mandates that rπ = gaΠi 6=πy
−hi
i (mod q)

and so ga = rπΠi 6=πy
hi
i (mod q). Hence, gδ = r1...rny

h1
1 ...y

hn
n (mod q). The last

verification equation is thus met.

We can now build a simulator specific to the Schnorr ring signature scheme:

Original Signer Σ(r)

L ≡ {y1, ...yn}xπ (signer π sk) m

∀i ∈ {1, .., n}, i 6= π,
Choose random ai ∈ Z∗q

(must be pairwise different)
Assign ri ≡ gai (mod q) ∈ Z∗q

∀i ∈ {1, .., n}, i 6= π
Send (m, ri) to RO

Receive hi ≡ H(m, ri) ∈ Zq

Choose random a ∈ Z∗q
Assign rπ=gaΠi 6=πy

−hi
i (mod q)∈Z∗q

(ensure rπ 6= ri for i 6= π)

Send (m, rπ) to RO
Receive hπ ≡ H(m, rπ) ∈ Zq

Compute δ=a+
∑
i 6=π ai+xπhπ (mod q)

H

output (r1, ..., rn, h1, ...hn, δ)

Verifier checks if:
1) ∀i ∈ {1, ...n}, hi = H(m, ri)

2) gδ = r1...rny
h1
1 ...y

hn
n (mod q)

Simulator S(r′) (bypasses RO)

L ≡ {y1, ...yn} m

Choose random index π ∈ {1, ..., n}

∀i ∈ {1, .., n}, i 6= π,
Choose random ai ∈ Z∗q

(must be pairwise different)
Assign r∼i ≡ gai (mod q) ∈ Z∗q

∀i ∈ {1, .., n}, i 6= π
Choose random h∼i ∈ Zq

Set H(m, r∼i) ≡ h∼i (bypass RO)

Randomly choose h∼π ∈ Zq
Choose random δ∼ ∈ Zq

Set r∼π ≡g
(δ∼−

∑
i 6=π ai)y

−h∼1
1 ...y

−h∼n
n (mod q) ∈Z∗q

(ensure r∼π 6= r∼i for i 6= π)

Set H(m, r∼π) ≡ h∼π (bypass RO)

output (r∼1 , ..., r
∼
n , h

∼
1 , ...h

∼
n , δ

∼)

Verifier checks if:
1) ∀i ∈ {1, ...n}, h∼i = H(m, r∼i)

2) gδ
∼

= r∼1 ...r
∼
n y

h∼1
1 ...y

h∼n
n (mod q)

3

2018 Bassam El Khoury Seguias c©

By construction, the output of S will satisfy the verification equations. Moreover, it
assigns a random value for each hi, i ∈ {1, ..., n} and bypasses the RO in doing so. Next,
note the following:

1. S does not use any private key.

2. Σ and S both have a range
R ≡ {(ε1, ..., εn, β1, ..., βn, γ) ∈ (Z∗q)n × (Zq)n+1 s.t. gγ = ε1...εny

β1
1 ...y

βn
n (mod q)}.

3. Σ and S have the same probability distribution over R. Indeed,
∀(ε1, ..., εn, β1, ..., βn, γ) ∈ R we have:

• For Σ :

P [(r1, ..., rn, h1, ..., hn, δ) = (ε1, ..., εn, β1, ..., βn, γ)] =

Pai∈Z∗q , hi∈Zq , a∈Z∗q [(εi = gai , ∀i ∈ {1, ..., n}, i 6= π) ∩ (βi = hi, ∀i ∈ {1, ..., n}) ∩
(επ = gaΠi 6=πy

−hi
i) ∩ (γ = a+

∑
i 6=π ai+xπhπ) ∩ (∀j, k ∈ {1, ..., n}, εj 6= εk)].

= 1
(q−1)...(q−n)

× (1
q
)n

The first factor is the probability of choosing the exact n values given by the
εi’s ∈ Z∗q that are pairwise different. The second factor is the probability of
choosing the exact n values given by the βi’s ∈ Zq.

• For S:

P [(r∼1 , ..., r
∼
n , h

∼
1 , ..., h

∼
n , δ

∼) = (ε1, ..., εn, β1, ..., βn, γ)] =

Pai∈Z∗q , h∼i ∈Zq , δ∼∈Zq [(εi = gai , ∀i ∈ {1, ..., n}, i 6= π) ∩ (βi = hi, ∀i ∈
{1, ..., n}) ∩ (επ = gδ

∼−
∑
i 6=π aiΠj∈{1,...,n}y

−h∼j
j) ∩ (γ = δ∼) ∩ (∀j, k ∈

{1, ..., n}, εj 6= εk)].

= 1
(q−1)...(q−n)

× (1
q
)n

The first factor is the probability of choosing the exact n values given by the
εi’s ∈ Z∗q that are pairwise different. Note that in the above, επ is also an
element of Z∗q that is different than all the other εi’s. The second factor is the
probability of choosing the exact n values given by the βi’s ∈ Zq.

With S adequately built for the Schnorr ring signature scheme, we conclude that (refer
to section 6 of part 1 of this series for a justification):

Pω,r,′H[A(ω)H,S(r′) succeeds in EFACM] = ε(k), for some ε non-negligible in k.

Step 3 : We now show that the probability of faulty collisions is negligible (refer to
section 6 of part 1 for a description of collision types). The 2 tyes of collisions fo the
generic scheme are:

4

2018 Bassam El Khoury Seguias c©

• ColType 1: A tuple (m, r) that S encounters – recall that S makes its own random
assignment to H(m, r) and bypasses RO – also appears in the list of queries that
A(ω) sends to RO. A conflict in the 2 values will happen with overwhelming
probability and the execution will halt.

• ColType 2: A tuple (m, r) that S encounters – recall that S makes its own random
assignment to H(m, r) – is the same as another tuple (m′, r′) that S encountered
at an earlier time instance – here too, S would have made its own random
assignment to H(m′, r′). Since the 2 tuples are identical (i.e., (m, r) = (m′, r′)), it
must be that the 2 random assignments match (i.e., H(m, r) = H(m′, r′)).
However, the 2 values will be different with overwhelming probability and the
execution will halt.

The aforementioned collisions must be avoided. In order to do so, we first calculate the
probability of their occurence. We assume that during an EFACM attack, A(ω) can
make a maximum of Q queries to RO and a maximum of QS queries to S(r′). Q and
QS are both assumed to be polynomial in the security parameter k, since the adversary
is modeled as a PPT Turing machine.

P [ColType 1] =P [∪all (m,r){(m,r) appeared in at least one of the QS queries to S and Q queries to RO}]

≤P [∪all r{r was part of at least one of the QS queries to S and Q queries to RO}]

≤
∑
all r∈Z∗q

P [∪(j=1,..,QS), (k=1,...,Q){r was part of at least the jth query to S and kth queries to RO}]

≤
∑
all r∈Z∗q

∑QS
j=1

∑Q
k=1 P [r was part of at least the jth query to S and kth queries to RO]

Note that the jth query (and any query in general) to S(r′) includes an assignment of n
random values of the form hi ≡ H(m, ri) for i ∈ {1, ..., n}. This is in contrast to the
Schnorr signature scheme that we encountered in part 2 of the series, and where the jth

query to S(r′) consisted of a single assignment of the form h ≡ H(m, r). So we get:

P [ColType 1] ≤
∑

all r∈Z∗q

∑QS
j=1

∑Q
k=1

n
(q−1)2

= (q − 1)× nQSQ
(q−1)2

= nQSQ
(q−1)

≤ nQSQ
2k−1

Since QS and Q are polynomial in k, we conclude that P [ColType 1] is negligible in k.

Next, we compute:

P [ColType 2] = P [∪all (m,r){(m, r) appeared at least twice during queries to S}]

≤ P [∪r∈Z∗q{r was part of at least 2 queries to S}]

Recall that the jth query (and any query in general) to S(r′) includes an assignment of
n random values of the form hi ≡ H(m, ri) for i ∈ {1, ..., n}. Note that by construction
of S(r′), all the ri’s corresponding to the n random assignments are pairwise-different
and hence distinct from each-other. So in order for a certain r value to appear twice, it
must be part of 2 different queries to S(r′). We can choose the 2 queries in

(
QS
2

)
ways.

5

2018 Bassam El Khoury Seguias c©

And for each one of these 2 queries, the r value can appear in any one of the n
assignments. So we get:

P [ColType 2] ≤
∑

r∈Z∗q
n
(
QS
2

)
× 1

(q−1)2
= n

(
QS
2

)
× q−1

(q−1)2
= nQS(QS−1)

2(q−1)
≤ nQ2

S

2×2k−1

And so P [ColType 2] is also negligible in k.

Putting it altogether, we find:

P [Col] = P [ColType 1 ∪ ColType 1] ≤ P [ColType 1] + P [ColType 2] ≤ n(QSQ+
Q2
S
2

)

2k−1 ≡ δ(k)

which is negligible in k. We can finally conclude (as was shown in section 6 of part 1),
that:

Pω,r,′H[A(ω)H,S(r′)succeeds in EFACM ∩ Col] ≥ ε(k)− δ(k), (non-negligible in k)

Step 4 : In this step, our objective is to show that if (ω∗, r′∗,H∗) is a successful tuple
that generated a first EFACM forgery, then the following quantity is non-negligible in k:

PH[A(ω∗)H,S(r′∗) succeeds in EFACM ∩ (ρµ~β 6= ρ∗µ~β
) | (ω∗, r′∗,H∗) is a succesfull first

forgery, and (ρi = ρ∗i) for i ∈ {1, ..., µ~β − 1}]

Here µ~β is an appropriate index that we will define in the proof. To further simplify the
notation, we let ρ∗i ≡ H∗(q∗i) and ρi ≡ H(qi) for all i ∈ {1, ..., µ~β}. (q∗i and qi denote

respectively the ith query to RO H∗ and RO H).

Let’s take a closer look at Pω,r,′H[A(ω)H,S(r′)succeeds in EFACM ∩ Col].

Any successful forgery must satisfy the (n+ 1) verification equations. The first n
verification equations check if hi = H(m, ri) for all i ∈ {1, ..., n}. And so we distinguish
between 2 scenarios (w.l.o.g. we assume that all A-queries sent to RO are distinct from
each-other since A can keep a local copy of previous query results and avoid redundant
calls):

• Scenario 1: A was successful in its forgery, and no collisions occured, and
∃i ∈ {1, ..., n} such that it never queried RO on input (m, ri).

• Scenario 2: A was successful in its forgery, and no collisions occured, and
∀i ∈ {1, ..., n} it queried RO on input (m, ri) during its execution.

Given a certain i ∈ {1, ..., n}, the probability of scenario 1 is upperbounded by the
probability that A picks a value for hi that matches the value of H(m, ri). Here,
H(m, ri) is the value that RO returns to V (the verification algorithm) when verifying
the validity of the forged signature. (It is upper-bounded because at the very least, the
constraint hi = H(m, ri) must be observed for a valid signature). And since hi can be
any value in Zq, we get:

6

2018 Bassam El Khoury Seguias c©

P [Scenario 1] ≤
∑n

i=1
1
q
≤ n

2k
, which is negligible in k.

So we assume that a successful forgery will likely be of the Scenario 2 type. We have:

P [Scenario 2] = Pω,r,′H[A(ω)H,S(r′)succeeds in EFACM ∩ Col]− P [Scenario 1]

≥ ε(k)− δ(k)− n
2k
≡ ν(k), which is non-negligible in k

By definition of scenario 2, we know for a fact that ∀i ∈ {1, ..., n}, there exists an
integer li ∈ {1, ...Q} such that li is the index of the query (m, ri) to RO. (Recall that Q
represents the total number of queries that A(ω) sends to RO). We define Ind(ω, r′,H)
to be the vector of indices (l1, ..., ln) corresponding to the queries (m, ri), i ∈ {1, ..., n}
that A(ω) sends to RO during execution. Note that since we requested by definition
that all the ri’s be distinct, then so will the li’s. By convention, if a certain (m, ri) is
not queried to RO, we let its corresponding li =∞. This definition allows us to build
the following sets:

• S =
{(ω, r′,H) | A(ω)H,S(r′)succeeds in EFACM ∩ Col ∩ maxni=1[Ind(ω, r′,H)] 6=∞}

In other terms, S is the set of tuples (ω, r′,H) that yield a successful EFACM
forgery when no collisions occur, and when A(ω) queried RO on all inputs
(m, ri) ∀i ∈ {1, ..., n} (i.e., scenario 2).

• S~l = {(ω, r′,H) | A(ω)H,S(r′)succeeds in EFACM ∩ Col ∩ Ind(ω, r′,H) = ~l}

where
~l ∈ Ln ≡ {(l1, ..., ln) | (1 ≤ li ≤ Q), and (∀i, j ∈ {1, ..., n}, (i 6= j) ⇒ (li 6= lj)}.
We let VQ,n denote that the cardinality of Ln. We have:

VQ,n = Q.(Q− 1)...(Q− n+ 1)

We can see that S~l represents the set of tuples (ω, r′,H) that yield a successful
EFACM forgery when no collisions occur, and when A(ω) queried RO on all
inputs (m, ri) ∀i ∈ {1, ..., n}, such that the index of the input query (m, ri) is

equal to (~l)i (i.e., the ith component of ~l).

Recall that, Pω,r′,H[(ω, r′,H) ∈ S] = P [Scenario2] ≥ ν(k), which is non-negligible in k.

And clearly, {∪~l∈LnS~l} partitions S. So
∑

~l∈Ln P [(ω, r′,H) ∈ S~l | (ω, r′,H) ∈ S] = 1.

This implies that ∃~l ∈ Ln s.t. P [(ω, r′,H) ∈ S~l | (ω, r′,H) ∈ S] ≥ 1
2VQ,n

.

If this were not the case, then one would get the following contradiction:

1 =
∑

~l∈Ln P [(ω, r′,H) ∈ S~l | (ω, r′,H) ∈ S] < VQ,n × 1
2VQ,n

= 1
2
< 1.

So we introduce the set I consisting of all vectors ~l that meet the 1
2VQ,n

threshold, i.e.

7

2018 Bassam El Khoury Seguias c©

I = {~l ∈ Ln | P [(ω, r′,H) ∈ S~l | (ω, r′,H) ∈ S] ≥ 1
2VQ,n
}

We claim that P [Ind(ω, r′,H) ∈ I | (ω, r′,H) ∈ S] ≥ 1
2
.

Proof By definition of the sets S~l we have:

P [Ind(ω, r′,H) ∈ I | (ω, r′,H) ∈ S] =
∑

~l∈I P [(ω, r′,H) ∈ S~l | (ω, r′,H) ∈ S]

= 1−
∑

~u/∈I P [(ω, r′,H) ∈ S~u | (ω, r′,H) ∈ S] > 1−
∑

~u/∈I
1

2VQ,n
> 1− VQ,n

2VQ,n
= 1

2

The next step is to apply the splitting lemma to each S~l,
~l ∈ I. First note that:

Pω,r′,H[(ω, r′,H) ∈ S~l] = Pω,r′,H[(ω, r′,H) ∈ (S~l ∩ S)]

= P [(ω, r′,H) ∈ S~l | (ω, r′,H) ∈ S]× Pω,r′,H[(ω, r′,H) ∈ S]

≥ 1
2VQ,n

× ν(k)

Let µ~l ≡ max{(~l)1, ..., (~l)n)}. Referring to the notation used in the splitting lemma
(section 7 of part 1), we let:

A ≡ S~l, X ≡ (ω, r′, ρ1, ..., ρµ~l −1), Y ≡ (ρµ~l , ..., ρQ), ε ≡ ν(k)
2VQ,n

, and α ≡ ν(k)
4VQ,n

= ε
2

X is defined as the space of tuples of all random tapes ω, all random tapes r′, and all
possibe RO answers to the first µ~l − 1 queries sent by A(ω). Y is defined as the space of
all possible RO answers to the last (Q− µ~l + 1) queries sent by A(ω). (Recall that
ρi ≡ H(qi)). The splitting lemma guarantees the existence of a subset Ω~l of tuples
(ω, r′,H) such that:

• Pω,r′,H[(ω, r′,H) ∈ Ω~l] ≥
ν(k)

4VQ,n

• ∀[(ω∼, r′∼,H∼) ≡ (ω∼, r′∼, ρ∼1 , ..., ρ
∼
µ~l −1, ρ

∼
µ~l
...ρ∼Q]) ∈ Ω~l, we have

PH[(ω∼, r′∼, ρ∼1 , ..., ρ
∼
µ~l −1, ρµ~l ...ρQ) ∈ S~l | (ω∼, r′∼,H∼) ∈ Ω~l] ≥

ν(k)
4VQ,n

, and so

PH[(ω∼, r′∼,H) ∈ S~l | (ω∼, r′∼,H∼) ∈ Ω~l, ρ1 = ρ∼1 , ..., ρµ~l −1 = ρ∼µ~l −1)] ≥ ν(k)
4VQ,n

• P [(ω, r′,H) ∈ Ω~l | (ω, r′,H) ∈ S~l] ≥ (ν(k)
4VQ,n

)/(ν(k)
2VQ,n

) = 1
2

We would like to compute the probability of finding a 2nd successful tuple (ω∗, r′∗,H∼)
given that (ω∗, r′∗,H∗) was a successful 1st tuple and s.t. ρ∼j = ρ∗j , j ∈ {1, ..., µ~l − 1}.
That means finding the following probability:

PH[(ω∗, r′∗,H) ∈ S~l | (ω∗, r′∗,H∗) ∈ S~l, ρ1 = ρ∗1, ..., ρµ~l −1 = ρ∗µ~l −1].

8

2018 Bassam El Khoury Seguias c©

From the splitting lemma results, we have a (non-negligible in k) lower-bound on
PH[(ω∗, r′∗,H) ∈ S~l | (ω∗, r′∗,H∗) ∈ Ω~l, ρ1 = ρ∗1, ..., ρµ~l −1 = ρ∗µ~l −1].

Note however, that Ω~l and S~l are generally distinct sets. And so we cannot conclude
that

PH[(ω∗, r′∗,H) ∈ S~l | (ω∗, r′∗,H∗) ∈ S~l, ρ1 = ρ∗1, ..., ρµ~l −1 = ρ∗µ~l −1]

= PH[(ω∗, r′∗,H) ∈ S~l | (ω∗, r′∗,H∗) ∈ Ω~l, ρ1 = ρ∗1, ..., ρµ~l −1 = ρ∗µ~l −1]

and therefore we cannot conclude that the following is non-negligible in k

PH[(ω∗, r′∗,H) ∈ S~l | (ω∗, r′∗,H∗) ∈ S~l, ρ1 = ρ∗1, ..., ρµ~l −1 = ρ∗µ~l −1]

In order to show that the above quantity is non-negligible in k, we proceed differently.
Suppose we can show that the following probability is non-negligible in k:

P(ω,r′,H)[∃~β ∈ I s.t. (ω, r′,H) ∈ (Ω~β ∩ S~β)]

This would imply that with non-negligible probability, we can find a tuple that belongs
to S~β (and hence corresponds to a successful forgery) and at the same time belongs to
Ω~β. We can then invoke the splitting lemma result just mentioned, to find a second
tuple coresponding to a second forgery and that has the desired properties.

To prove the above, we proceed as follows:

P [∃~β ∈ I s.t. (ω, r′,H) ∈ (Ω~β ∩ S~β) | (ω, r′,H) ∈ S]

= P [∪~l∈I{(ω, r′,H) ∈ (Ω~l ∩ S~l) | (ω, r′,H) ∈ S}]

=
∑

~l∈I P [(ω, r′,H) ∈ (Ω~l ∩ S~l) | (ω, r′,H) ∈ S], since the S~l’s are disjoint.

=∑
~l∈I{P [(ω, r′,H) ∈ Ω~l | (ω, r′,H) ∈ (S~l ∩ S)]× P [(ω, r′,H) ∈ S~l | (ω, r′,H) ∈ S]}∑

~l∈I{P [(ω, r′,H) ∈ Ω~l | (ω, r′,H) ∈ S~l]× P [(ω, r′,H) ∈ S~l | (ω, r′,H) ∈ S]}

≥ 1
2

∑
~l∈I P [(ω, r′,H) ∈ S~l | (ω, r′,H) ∈ S], (3rd result of splitting lemma above)

≥ 1
2
× 1

2
(by the claim proven earlier) = 1

4
.

And so we conclude that:

P(ω,r′,H)[∃~β ∈ I s.t. (ω, r′,H) ∈ (Ω~β ∩ S~β)]

= P(ω,r′,H)[∃~β ∈ I s.t. (ω, r′,H) ∈ (Ω~β ∩ S~β ∩ S)]

9

2018 Bassam El Khoury Seguias c©

= P [∃~β ∈ I s.t. (ω, r′,H) ∈ (Ω~β ∩ S~β) | (ω, r′,H) ∈ S]× P(ω,r′,H)[(ω, r
′,H) ∈ S]

≥ ν(k)
4

, which is non-negligible in k.

So let ~β be such an index and (ω∗, r′∗,H∗) such a tuple. From the result above, we
know that finding such a (ω∗, r′∗,H∗) ∈ (Ω~β ∩ S~β) can be done with non-negligible
probability. And since (Ω~β ∩ S~β) ⊂ Ω~β, we must have (ω∗, r′∗,H∗) ∈ Ω~β. We can then

invoke the 2nd consequence of the splitting lemma, and write:

PH[(ω∗, r′∗,H) ∈ S~β | (ω∗, r′∗,H∗) ∈ S~β, ρ1 = ρ∗1, ..., ρµ~β−1 = ρ∗µ~β−1)] =

PH[(ω∗, r′∗,H) ∈ S~β | (ω∗, r′∗,H∗) ∈ Ω~β, ρ1 = ρ∗1, ..., ρµ~β−1 = ρ∗µ~β−1)] ≥ ν(k)
4VQ,n

We still have one last constraint to impose and that is that ρ∗µ~β
6= ρ∼µ~β

. We show that

the following quantity is non-negligible:

PH[((ω∗, r′∗,H) ∈ S~β) ∩ (ρµ~β 6= ρ∗µ~β
)| (ω∗, r′∗,H∗) ∈ S~β, ρ1 = ρ∗1, ..., ρµ~β−1 = ρ∗µ~β−1)]

To prove this, note that if B and C are independent events, then we can write:

P [A|C] = P [A ∩B|C] + P [A ∩B|C] ≤ P [A ∩B|C] + P [B|C] = P [A ∩B|C] + P [B]

And so we get P [A ∩B|C] ≥ P [A|C]− P [B]. This results allows us to write:

PH[((ω∗, r′∗,H) ∈ S~β) ∩ (ρµ~β 6= ρ∗µ~β
)| (ω∗, r′∗,H∗) ∈ S~β, ρ1 = ρ∗1, ..., ρµ~β−1 = ρ∗µ~β−1)]

≥ PH[(ω∗, r′∗,H) ∈ S~β| (ω∗, r′∗,H∗) ∈ S~β, ρ1 = ρ∗1, ..., ρµ~β−1 = ρ∗µ~β−1)]− PH[ρµ~β = ρ∗µ~β
]

= PH[(ω∗, r′∗,H) ∈ S~β| (ω∗, r′∗,H∗) ∈ Ω~β, ρ1 = ρ∗1, ..., ρµ~β−1 = ρ∗µ~β−1)]− PH[ρµ~β = ρ∗µ~β
]

(because we chose (ω∗, r′∗,H∗) ∈ Ω~β ∩ S~β)

≥ ν(k)
4VQ,n

− 1
2k

, which is non-negligible in k.

Step 5 : The final step uses the 2 forgeries obtained earlier to solve an instance of the
Discrete Logarithm (DL) problem. Here is a recap of Step 4 results:

• With non-negligible probability of at least ν(k)
4

we get a successful tuple

(ω∗, r′∗,H∗), s.t. (ω∗, r′∗,H∗) ∈ (Ω~β ∩ S~β) for some vector of indices ~β ∈ I. So by
running A a number of times polynomial in k, we can confidently find such a
tuple.

• Once we find such a tuple, we’ve also shown that with non-negligible probability
of at least ν(k)

4VQ,n
− 1

2k
, we can find another successful tuple (ω∗, r′∗,H∼) such that

(ω∗, r′∗,H∼) ∈ S~β and (ρ∼1 = ρ∗1), .., (ρ∼µ~β−1 = ρ∗µ~β−1), but (ρ∼µ~β
6= ρ∗µ~β

).

10

2018 Bassam El Khoury Seguias c©

W.l.o.g, let (ω∗, r′∗,H∗) correspond to σforge(m,L) ≡ (r1, ..., rn, h1, ..., hn, δ), and
(ω∗, r′∗,H∼) correspond to σforge(m

′, L) ≡ (r′1, ..., r
′
n, h

′
1, ..., h

′
n, δ
′).

Recall that ~β is the vector ((~β)1, ..., (~β)n) where (~β)i denotes the index of query (m, ri)
that A sends to the RO. Since the 2 experiments corresponding to the 2 successful
tuples have the same random tapes ω∗ and r′∗, and since the 2 corresponding ROs H∗
and H∼ behave the same way on the first µ~β − 1 queries (recall that µ~β = maxni=1(~β)i),
we can be confident that:

• The first µ~β queries sent to the 2 ROs are identical. In particular, ∀i ∈ {1, ..., n}
we have (m, ri) = (m′, r′i).

• The first (µ~β − 1) replies of the 2 oracles H∗ and H∼ are the same. Suppose
w.l.o.g. that (m, rζ), (where ζ ∈ {1, ..., n}), corresponds to the last query of this
type that is sent to the ROs. (m, rζ) is actually the µth~β query sent to RO (by

definition of µ~β). We then have H∗(m, ri) = H∼(m, ri), ∀i ∈ {1, ..., n}, i 6= ζ.

• hζ = H∗(m, rζ) = H∗(qµ~β) = ρ∗µ~β
6= ρ∼µ~β

= H∼(qµ~β) = H∼(m, rζ) = h′ζ .

So we have 2 successful forgeries σforge(m) ≡ (r1, ..., rn, h1, ...hζ , ..., hn, δ) and
σforge(m) ≡ (r1, ..., rn, h1, ..., h

′
ζ , ..., hn, δ

′), with hζ 6= h′ζ . Since both are valid signatures,
they must satisfy the verification equations. For the particular case of a Schnorr ring
signature, they must satisfy the following 2 equations (1 equation per signature):

• gδ = r1...rny
h1
1 ...y

hζ
ζ ...y

hn
n , where {y1, ..., yn} is the set of public keys of the n ring

members associated with the signature.

• gδ′ = r1...rny
h1
1 ...y

h′ζ
ζ ...y

hn
n , where {y1, ..., yn} is the set of public keys of the n ring

members associated with the signature.

Writing yζ = gxζ (xζ is the secret key corresponding to yζ), we get:

gδ−δ
′
= y

hζ−hζ′
ζ ⇒ xζ = δ−δ′

hζ−hζ′
(mod q).

Since, hζ 6= hζ′ , we can solve for xζ (the DL of yζ) in polynomial time. This contradicts
the intractability of DL on multiplicative cyclic groups and we conclude that our
signature scheme (in this case the Schnorr ring signature scheme) is secure against
EFACM in the RO model.

4 Security analysis - Anonymity

In this section, we show that our generic scheme satisfies the anonymity definition #1
introduced in part 3 of this series. Recall that roughly speaking, this definition
mandates that the probability of guessing the real signer be ≈ 1

n
(in an n-ring setting).

This probability is independent of any knowledge about any member’s private key. In
other terms, even if a signer is coerced or subpoenaed to release her private key, nothing
can be done to prove that she is the real signer (with probability better than random
guessing).

11

2018 Bassam El Khoury Seguias c©

To prove anonymity in our case, we show that any signature could have been created
with equal probability by any of the n members of the ring. We show that releasing
information about the secret key of any ring member does not modify this probability.
That automatically implies that even when a subset of private keys gets compromised,
there is still an equiprobable likelihood that the signature was created by any member.

Proof: Let σ(m,L) ≡ (r1, ..., rn, h1, ...hn, δ) be a valid signature on message m and ring
L. That means that all (n+ 1) verification equations are satisfied. Let α be any
member of the ring (with compromised or non-compromised secret key xα). The
probability that σ(m,L) was issued by α is given by:

P [α issued σ(m,L) | σ(m,L) ≡ (r1, ..., rn, h1, ...hn, δ); and given a hash function H] =

P [α guesses the correct pairwise different ri values in Z∗q] = Πn
i=1(1

q−i)

Note that once the ri’s are calculated, the hi’s will be automatically determined since
we are using a specific hash function. Clearly, the above probability does not depend on
any specific information about member α. It is the same for all ring members.

References

[1] J. Herranz and G. Saez. Forking lemmas in the ring signatures’ scenario. Proceedings
of INDOCRYPT’03, Lecture Notes in Computer Science(2904):266–279, 2003.

[2] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 2000.

12

